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Abstract— We are witnessing exponential growth in the number of powerful, independendant, multiply-connected, energy-rich stationary 
and mobile computing devices.We claim that cloud computing can be realized over such potentially scattered infinite pool of resources. 
However, Given the contemporary resource-allocation, virtilization-management, and task-management mechanisms supporting modern 
clouds, it is impossible to construct a cloud that can autonomously adapt to such real-time dynamic variation of heterogeneously-composed 
potentially- mobile resources. To this end, we propose CoCloud, a comprehensive collaborative cloud management platform, for enabling 
both resource-infinite computing paradigm over stationary and mobile nodes, and a true on-demand cloud computing. A reference model is 
presented to reflect CoCloud ability to serve different service delivery models. CoCloud’s Global Resource Positioning System (GRPS) 
employs a global mobile and stationary resource discovery and monitoring to globally position active resources based on a dynamic 
spatiotemporal calendar. GRPS provides dynamic real-time scheduling, forecasting and tracking of idle, mobile and stationary, resources. 
Resources are provisioned through CoCloud’s smart Virtualization Management Layer (VML). VML fractionizes a user’s application; 
employs a vast number of dynamic, resource-aware micro virtual machines to encapsulate such fractions and facilitate capsule hosting on 
matching cloud hardware resources. Such employment enables seamless execution over heterogeneous resources, lightweight load 
migration, and low cost of failure. Using analysis and simulations, results show that CoCloud can guarantee reliable resource provisioning, 
transparently maintaining applications’ QoS, and preventing service disruption in highly dynamic environments. Also, CoCloud resource 
collaboration enhances both application performance and management overhead by reducing the number of inter-host VM migrations as 
well as the communication delay. 

Index Terms— Cloud Computing, Mobile Computing, Collaborative Computing, Distributed Resource Management, Virtualization.   

——————————      —————————— 

1 INTRODUCTION                                                                     

ITH the emergence of cloud computing and the ad-
vances in mobile computing technologies, the mobile 
cloud computing (MCC) paradigm was introduced. 

There are two types of MCC architectures [1-5]:1) a MCC of-
fering access and service delivery to users through their mo-
bile devices where all computations, data handling, and re-
source management are performed in the static cloud to of-
fload the computational workload from the mobile nodes to 
the cloud [1] [2] [3]; and 2) utilizing the idle resources of mo-
bile devices and enabling them to work collaboratively as 
cloud resource providers [4] [5]. 
In this paper, and in a prior series of papers [6] [7] [8] [9] [10], 
we adopt and extend the latter definition of MCC as cloud 
computing, through the collaboration and virtualization of 
heterogeneous, mobile or stationary, scattered, computing 
resources forming a collaborative ad-hoc cloud platform that 
provisions computational services to its users. We term such 
cloud construction, Dynamic Collaborative Cloud, or CoCloud 
for short. 

Current propositions for MCC solutions, [4] [5] [11] [12] [13], 
are primarily computing-cluster like rather than cloud-like 
systems. These approaches facilitated the execution of a cer-
tain distributed application(s) hosted on a stationary/semi-
stationary stable mobile environment. However, no prior re-
search work has realized the essential characteristics of the 
cloud model as defined by the National Institute of Standards 
and Technology (NIST) [14]. 
In order to build a CoCloud, there are multiple challenges that 
have to be addressed. These challenges are as follows.  
Current resource management and virtualization technologies 
do not readily provide a virtualization layer that can autono-
mously adapt to the real-time dynamic variation, mobility, 
and fractionalization of such infrastructure [4] [5]. Conse-
quently, these limitations make it almost impossible to isolate 
the resource layer concerns from the executing code logic. 
Such isolation is an enabler for the cloud to operate and provi-
sion its basic services such as, seamless task deployment, ex-
ecution, migration, dynamic/adaptive resource allocation, and 
automated failure recovery. 
Further, given the dynamic nature of the mobile hardware 
resources, resource allocation is another vital issue that needs 
to be addressed to construct a resilient collaborative cloud. 
Such cloud has a dynamic nature as nodes, usually having 
heterogeneous capabilities, may join or leave the formed cloud 
varying its computing capabilities. Also, the number of reach-
able nodes may vary according to the mobility pattern of these 
nodes. However, most of the existing task scheduling and re-
source allocation algorithms [15] [16] [17] [18] [19] did not 
consider the prediction of resource availability or the connec-
tivity among mobile nodes in the future which affects the per-
formance of submitted applications. Therefore, for the cloud to 
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operate reliably and safely, we need to accurately specify the 
expected amount of resources that will participate in the cloud 
as a function of time to probabilistically ensure that we will 
always have the needed resources at the right time to host the 
requested tasks.  
Unfortunately, the mobile resources are highly isolated and 
non-collaborative. Even for those resources working in a net-
worked fashion, they suffer from limited self and situation 
awareness, and collaboration. Additionally, given the high 
mobile nature of these devices, there is a large possibility of 
failure such that permanent connectivity may not be always 
available. This problem is common in dense mobile wireless 
networks due to traffic congestion and network failures [20]. 
In addition, mobile nodes cannot collaboratively contribute to 
form a cloud anymore if they are susceptible to failure for 
many reasons, e.g., being out of battery or hijacked. Existing 
explicit failure resolution and fault tolerance techniques were 
not effifective enough to guarantee safe and stable operation 
for many of the targeted applications limiting the usability of 
such mobile resources. 
Consequently, there is a need for a solution that effectively 
and autonomically manages the high resource variations in a 
dynamic cloud environment while including the different 
main types of service offerings and satisfying the five essential 
characteristics of the cloud model defined by NIST [14].This 
solution should include autonomic collaborative components 
for service and resource discovery, scheduling, allocation, 
monitoringand forecasting to provide elastic and resilient 
CoCloud. 
In this paper, we address the aforementioned challenges by a 
set of interrelated collaborative solutions (Pillars) towards an 
actual dynamic collaborative cloud management platform, 
CoCloud as shown in Fig. 1. However, we presented each of 
these pillars independently in previous works. Additionally, 
we perform new evaluations, in this paper, to study the effects 
of connectivity, density of nodes, reliability, and scalability 
and management overhead associated with the performance 
of the formed CoCloud.  
   Our contributions are to (1) provide a more comprehensive 
approach, that includes all previous works, which shows the 
overall architecture of our approach; (2) solve the main limita-
tions of the current attempts towards realizing CoCloud 
against the essential characteristics of the cloud model as de-
fined by NIST; (3) present a reference model to provide the 
different main types of X service offerings using our CoCloud; 
and (4) present our vision and descriptions of probabilistic 
models and artificial intelligence algorithms implemented in 
the Prediction Service (PS) Module that enhance the prediction 
accuracy of resource availability.  
  CoCloud enables both a new resource-infinite computing 
paradigm using cloud computing over stationary and mobile 
nodes, and a true ubiquitous on-demand cloud computing. 
This has the potential to liberate cloud users from being con-
cerned about resource constraints and provides access to 
cloud anytime and anywhere. CoCloud provides the right 
resources on-demand, anytime and anywhere, to form an ac-
tual collaborative cloud formed over hybrid mobile and sta-
tionary computing resources, while providing the main cloud 

service delivery models (PaaS, IaaS and SaaS) [14]. 
CoCloud synergistically manages 1) resources to include re-
source harvesting, forecasting and selection, and 2) cloud ser-
vices concerned with resilient cloud services to include re-
source provider collaboration, application execution isolation 
from resource layer concerns, seamless load migration, fault-
tolerance, and task deployment, migration, revocation, etc. 
Specifically, the main novelty in this work is the developed 
CoCloud pillars, which are the resource and cloud manage-
ment platforms discussed as follows. 
 
CoCloud Resource Management 
Global Resource Positioning System (GRPS)  
Provides global mobile and stationary resource discovery and 
monitoring. A novel distributed spatiotemporal resource ca-
lendaring mechanism with real-time synchronization is pro-
posed to mitigate the effect of failures occurring due to unsta-
ble connectivity and availability in the dynamic mobile envi-
ronment, as well as the poor utilization of resources. This me-
chanism provides a dynamic real-time scheduling and track-
ing of idle mobile and stationary resources. This would en-
hance resource discovery and status tracking to provide access 
to the right-sized cloud resources anytime and anywhere [10]. 
Collaborative Autonomic Resource Management System (CARMS) 
Efficient use of idle mobile resources.Our platform allows 
sharing of resources, among stationary and mobile devices, 
which enables cloud computing systems to offer much higher 
utilization, resulting in higher efficiency. CARMS provides 
system-managed cloud services such as configuration, adapta-
tion and resilience through collaborative autonomic manage-
ment of dynamic cloud resources and membership. This helps 
in eliminating the limited self and situation awareness and 
collaboration of the idle mobile resources [21]. 

 
CoCloud Cloud Management 
Architecture for resilient cloud operation on dynamic mobile 
resources to provide stable cloud in a continuously changing 
operational environment. We presented a preliminary version 
of this architecturein [7] . Such goal is achieved by using 
trustworthy fine-grained virtualization and task management 
layer, which isolates the running application from the under-
lying physical resource enabling seamless execution over hete-
rogeneous stationary and mobile resources. This prevents the 
service disruption due to variable resource availability. The 
virtualization and task management layer comprises a set of 
distributed powerful nodes that collaborate autonomously 
with resource providers to manage the virtualized application 
partitions. 
The rest of the paper is organized as follows. In Sections 2 and 
3, we give an overview of related works and CoCloud, respec-
tively. We then detail the architecture of the proposed ap-
proach to provide resource and cloud management in a dy-
namic environment in Sections 4 and 5, respectively. In Section 
6, we present a scenario of operation of our approach discuss-
ing an evalautuon study of the presented approach. Finally, 
we conclude in Section 7 and outline open research issues. 
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2  RELATED WORK 
The state of the art in research shows that some research work 
discussed the idea of forming MCC platform relaying on the 
hardware resources provisioned by stationary or semi-
stationary devices. However, these solutions presented com-
putational-clusters hosting certain distributed application(s) 
rather than generic computing-clouds. In the next subsections 
we will briefly discuss the latest research targeting CoClouds 
classified by the associated research objective: 

 
Mobile-resource Sharing 
In [4], authors proposed a preliminary design for a manage-
ment framework that exploits the resources of a collection of 
nearby mobile devices to construct a virtual ad hoc mobile 
computing cluster. Therefore, it is a limited scenario that did 
not consider high node mobility cases where connectivity is 
not stable, leading to disconnections and faults. Similarly, ex-
periments for job sharing were conducted in [11]over a stable 
ad-hoc network linking a user group of mobile device. Unfor-
tunately, they shared the same limitation as the aforemen-
tioned work; they presented a computing cluster management 
platform with no consideration for resource mobility, hetero-
geneity, dynamic connectivity of resources.  
Hyrax platform [5]was one of those who introduced the con-
cept of using mobile devices as computation resources. The 
platform used a central server to utilize data and execute 
computing jobs on networks of homogeneously configured 
android smart phones. Hyrax did not consider the general 
scenario where hardware resources are heterogeneously con-
figured and highly mobile. The system offered limited man-
agement automation, Hyrax did not consider a real users’ mo-
bility where mobile resources should be automatically and 
dynamically discovered, scheduled, allocated in a distributed 
manner largely transparent to the users.  
In [12] researchers demonstrated the feasibility of exploiting 
the resources in mobile devices to execute work units as part 
of a grid and upload results to a server. However, the model 
of this approach was specifically developed to a single mobile 
hardware device or operating system. A more generic solution 
presented in [13], they proposed a collaborative framework 
that enables mobile devices to participate in executing compu-
tation-intensive tasks in a computing cluster to expand the 
shared resources. They focused only on task partitioning and 
offloading where a ratio of participation is determined de-
pending on many factors, e.g., the system capability, the mo-
bile device’s performance, and the network state. However, 
the proposed framework did not consider a real mobile net-
work environment that is relatively unstable. The work pre-
sented in [22] addresses how the mobility could enhance the 
performances of distributed computation and the resilience of 
services in computing clusters formed from mobile ad-hoc 
networks. Authors show that improvement can be achieved in 
the performance of distributed computation with even a small 
percentage of highly mobile nodes in highly localized net-
works.  
Most of the previously mentioned research works [4] [11] [22] 
[13] did not take the rapid elasticity, the heterogeneity of 
pooled resources or the broad network access characteristics 

into considerations. 
 

Vehicular Cloud 
Exploiting the virtually unlimited power supply in vehicles , 
researchers in [23] [24] [25] discussed the possibility of having 
a MCC using a powerful on-board computers augmented with 
huge storage devices hosted on stationary vehicles acting as 
networked computing centers on wheels. Given the limited 
mobility of such solutions, we do not consider them as a rea-
listic implementation of a generic computing cloud. Addition-
ally, the proposed approaches only focused on one delivery 
service model, the IaaS and provided a virtual environment to 
satisfy specific client application. In [26], authors presented an 
overview about a datacenter architecture for the management 
of physical resources of vehicular nodes. However, this scena-
rio is considered as a stable environment, such that the long-
term parking lot of an international airport guarantees that 
there are at least a specific number of vehicles parked in the 
airport at any time and ready for utilization. Therefore, this 
solution does not provide the rapid elasticity characteristic.  In 
addition, no solutions were provided for dynamic environ-
ments with neither heterogeneous resources nor task schedul-
ing and resource allocation. 

 
Limitations in Current Approaches 
The main limitations of the current attempts towards realizing 
CoClouds against the essential characteristics defined by the 
NIST are summarized as shown in Table 1.  
 

TABLE 1 
THE MAIN LIMITATIONS OF THE CURRENT COCLOUDS AGAINST THE 

ESSENTIAL CHARACTERISTICS DEFINED BY THE NIST 
 

NIST Essential 
Characteristics 

Limitations of the current attempts to-
wards realizing CoClouds 

On-demand self-
service  

• Limited provisioning of computing capabilities 
where no global resource discovery or monitoring 
is available. 

Broad network 
access  

• Limited capabilities are only available over a local 
network. However, computing capabilities are not 
globally available and cannot used by heterogene-
ous platforms (e.g., mobile phones, tablets, lap-
tops, and workstations). 

Resource pooling  • Execution is limited to distributed applications 
built to execute on the targeted static platform. 

• Resource sharing profile is limited, where re-
sources were shared among tasks built to execute 
on it. 

• No virtualization layer and no isolation between 
the physical resource, the data, and the task logic. 

• Coarse grain sharing and task execution. 
• Static task assignment, where no tailoring to the 

task size to match the resources. 
Rapid elasticity  • Provisioning of limited resource pool while giving 

the illusion of infinite resource availability. 
• Limited failure resilience leads to unreliable ex-

ecution.  
Measured service  • Limited task mobility leads to limited load balanc-

ing.  
• Poor resource utilization. 
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3   COCLOUD OVERVIEW 
Figures 1 through6 depict the concept and overall design of 
CoCloud. CoCloud achieves the five essential characteristics 
listed by NIST and provides the main service models (PaaS, 
IaaS, and SaaS).  

 Fig. 1. CoCloud Concept. 

The GRPS provides both the broad network access and the 
measured service characteristics of a cloud model. To achieve 
these characteristics, GRPS adopts a novel spatiotemporal ca-
lendaring mechanism with real-time synchronization to pro-
vide a dynamic real-time scheduling and tracking of idle, mo-
bile and stationary, resources. In addition, the GRPS provides 
a hierarchical zone architecture with a synchronization proto-
col between different levels of zones to provide the broad 
network access characteristic and to enable resource-infinite 
computing. 
Both the on-demand self-service and the resource pooling cha-
racteristics are provided by CARMS, which maps applications' 
requirements to the currently or potentially available mobile 
resources. This would support formed cloud stability in a dy-
namic resource environment.  
On the other hand, the rapid elasticity characteristic is pro-
vided by our trustworthy dynamic virtualization and task 
management layer, which isolates the hardware concern from 
the task management. Such isolation empowered CoCloud to 
support autonomous task deployment/execution, dynamic 
adaptive resource allocation, seamless task migration and au-
tomated failure recovery for services running in a continuous-
ly changing unstable operational environment. CoCloud plat-
form enhances service resilience against failures via multi-
mode recovery and real-time, context and situation-aware ad-
justment of shuffling and recovery policies. 
Our Virtualization and task Management Layer (VML) is an 
adapted version of CyberX proposed in [27] [28], which is a 
biologically inspired Cell Oriented Architecture (COA) [27] 
based platform with active components, termed Cells. Cells 
support development, deployment, execution, maintenance, 
and evolution of software. Also, Cells separate logic, state and 
physical resource management. Cells are realized in the form 
of intelligent capsules or micro virtual machines that encapsu-

lates executable application-partitions defined as code va-
riants. Applications can be defined in one or more Cell-
encapsulated variants. Generic Cells are generated by the host 
middleware termed COA-Cell-DNA (CCDNA). The virtuali-
zation and task management layer dynamically composes 
such Cells into larger forms representing the full application. 
Such construction facilitates hiding the heterogeneity of the 
underlying hardware resources from the application concern 
enabling seamless deployment, distribution, and migration of 
application on the cloud mobile nodes. 
CoCloud has a portable access application namely, iCloud 
App interface, which achieves the broad network access cha-
racteristic to provide seamless access to and provisioning of 
resources. 
CoCloud comprises two primary types of nodes, as shown in 
Fig. 2: a fixed control node, and a mobile compute node. Each 
type of node has an agent running on it, where we propose a 
hierarchical model based on the concept of an agent as the 
fundamental building block of our management platform. 
There are two types of agents: a Cloud Agent (CA), which 
runs on a fixed control node, and a Tenant Agent (TA), which 
runs on a mobile compute node. The TA manages the partici-
pant’s local spatiotemporal resource calendar. It connects with 
all other agents involved in the cloud formations, and syn-
chronizes the calendar’s content with the global spatiotempor-
al resource calendar on a CA. A CA, as a requester to form a 
cloud, manages the formed cloud by keeping track of all the 
resources joining its cloud. The CA is deployed on a high ca-
pability node to manage and store the data related to spati-
otemporal calendars for all participants within a cloud.  
 

Figure 2.  CoCloud Abstract Overview. 
Our CoCloud management platform handles all the tasks re-
lated to both the Resource Domain concerned with the 
otemporal resource allocation, and the Task Domain con-
cerned with the task deployment, migration, revocation, etc. as 
shown in Fig. 3. The next sections provide more details about 
the two domains. 
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Figure 3.  CoCloud Management of Mobile Cloud Computing. 
 
Cloud Reference Model 
The left part of Fig. 4 shows the architecture framework of a 
fixed computing cloud [29], which is proposed by the Cloud 
Security Alliance. At the two bottom layers, the physical facili-
ty and the computing hardware form the most basic compu-
ting unit. Since a cloud service provider pools together a vast 
amount of computation resources that may use different 
hardware, the computation ability of a set of hardware should 
be able to be abstracted and each set of hardware must be able 
to communicate with other’s hardware. The facility, hardware, 
abstraction, and connectivity together form a computing grid 
that supports any additional service provided by a computing 
cloud. To enable a client or another cloud to manage and inte-
ract with a set of hardware, an API is implemented above the 
connectivity and abstraction layers. The computing grid to-
gether with the API can provide IaaS. A cloud computing ser-
vice provider can also implement middleware capabilities on 
which clients can develop software. The infrastructure togeth-
er with the middleware resembles a platform on which com-
mon programming languages and tools can be supported; that 
is, a cloud provider provides PaaS by overtaking the man-
agement task of the infrastructure in the middleware. The 
cloud provider can then further provide tailored software, 
content, and their presentation based on the provided plat-
form. This delivery of “the entire user experience” is known as 
providing SaaS. 
 
Ontology 
It is important to note that commercial cloud providers may 
not neatly fit into the layered service models. Nevertheless, the 
reference model is important for relating real-world services to 
an architectural framework and understanding the resources 
and services requiring security analysis. Our CoCloud plat-

form includes the different main types of X service offerings, 
as shown in Fig. 4, SaaS, PaaS, andIaaS. In this subsection, we 
present a simple analogy between CoCloud model and the 
conventional cloud reference model as follows. 

• Realizing IaaS, which includes the entire infrastruc-
ture resource stack, on CoCloud is a complicated task as the 
entire management platform and hypervisor layer should be 
working through the virtualization and task management 
layer. The only piece of software that will be statically availa-
ble on the host is the CCDNA. The hypervisor layer will be 
operating above the CCDNA where its entire set of services 
fractionalized and encapsulated in Cells. This model suits the 
mobile and resource constrained and fractionalized nature of 
CoCloud resources. We can represent it from a different 
perspective if we used a complicated version of the Cell built 
to provision all the features of the regular hypervisor. How-
ever, such Cell will not have many of the useful features that 
the fine-grained Cell had such as, low cost of failure, fast re-
covery, and resource efficient execution. Additionally, this 
representation will limit the number of hosts that can coope-
rate with CoCloud to those hosts with massive computation-
al power. Ultimately, IaaS should provide a set of APIs, 
which allow management and other forms of interaction with 
the infrastructure by consumers with our model these API 
will be encapsulated as Cells too. 

• CoCloud provides the PaaS model by virtualizing 
application development frameworks, middleware capabili-
ties, and functions such as database, messaging, and queuing, 
and encapsulating it in Cells of the virtualization and task 
management layer. The CCDNA will be hosting such services 
or part of these services, while the virtualization and task 
management layer will seamlessly consolidate these parts 
emulating the natural behavior of these services similar to the 
conventional model.  

• We presented the SaaS model in details, as this is the 
simplest model to build in our case given that the services 
will be built to suit service-execution model of our virtualiza-
tion and task management layer. The CCDNA represents a 
static middleware installed on all the hosts facilitating Cell 
execution, and the software services are encapsulated as a 
number of Cells operating above it. All the operation man-
agement, Cell deployment, revocation, failure recovery, and 
other management tasks will be autonomously handled by 
the CoCloud cloud management platform, the virtualization 
and task management layer, with no involvement from the 
user or the cloud operator. 

In this paper, we only focus on the SaaS model as tasks are 
uniform where it is much easier to represent. We build tasks 
as partitions that are deployed on ready cells, where users 
interact with the application not the infrastructure. 

4  CLOUD RESOURCE MANAGEMENT  
 
4.1 Resource Management at Compute Node 
Fig. 5 depicts the building blocks of a Compute Node. Re-
source management components of the compute node are de-
tailed as follows. 
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Figure 4.  Providing service models by using PlanetCloud 
 
The iCloud interface: It is an interface between the agent and a 
user/ administrator, or other systems, e.g., social networks 
and other database systems. A user/ administrator uses the 
iCloud interface to manage all data in the spatiotemporal re-
source calendar. In addition, the interface enables defining the 
settings required for a formed cloud. 
The knowledge unit: It consists of two subunits, a local spati-
otemporal resource calendar, which includes spatial and tem-
poral information about the available resources, and informa-
tion bases, that contains predefined or on the fly policies 
created by a cloud admin. Also, information bases contain 
information about the formed cloud, e.g., Service Level 
Agreement (SLA), types of resources needed, amount of each 
resource type needed, and billing plan for the service, etc. 
Participant Resource Calendaring Service (PRCS): PRCS in-
cludes a Participant Calendar Manager (PCM) which acts as a 
service controller for managing the records of the local spati-
otemporal resource calendar. PCM interacts with the synchro-
nizer to synchronize the spatiotemporal resource calendar 
with other GRCSs. Also, PCM automatically monitors the in-
ternal state of the participant’s resources. On the other hand, 
PRCS provides the trust management services with the re-
quired data to perform trust and security operations. 
The Input/Output (I/O) unit: It provides the required commu-
nications for different activities such as cloud formation re-
quests and responses.  
The lowest layer, of the TA's building blocks, consists of the 
application, networking, and computing resources, which are 
involved in the delivery of the service.  

 
4.2 Resource Management at Control Node 
The main building blocks of a Control Node are shown in Fig. 
6. The functionalities of their resource management are de-
scribed below. 
The knowledge unit: A CA has a global spatiotemporal re-
source calendar which includes spatial and temporal informa-
tion, resource profiles, and event calendars of the all available 
resources of a cloud’s participants. Therefore, the CA main-
tains the overall picture of the resource capability within the 
cloud. The CA uses a global task repository to store the all 

tasks within a cloud. 
Group Resource Calendaring Service (GRCS): Distributed 
GRCSs operate on the updated data from participants’ calen-
dars. These updated data are stored in a group spatiotemporal 
resource calendar. GRCS and PRCS  are the two primary types 
of services forming a global resource positioning system 
(GRPS) [10], for dynamic real-time resource harvesting, sche-
duling, tracking and forecasting. GRCS comprises four types 
of modules:The Group Calendar Manager (GCM) module, the 
Synchronizer, the Prediction Service (PS), and the Trust Man-
agement Services.  

 
Figure 5.  Compute Node Building Blocks. 

 
 Figure 6.  Control Node Building Blocks. 
GCM acts as a service controller for managing records of 
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group spatiotemporal resource calendars. In addition, a calen-
dar manager feeds the PS with the required data to perform 
resource forecasting.  The following subsection will discuss 
the construction and operation of PS. 
The Prediction Service (PS) Module: The PS module employs 
probabilistic models and artificial intelligence algorithms for 
forecasting accurately resources clarifying the time they will 
be available and their expected locations. In addition, the PS 
learns and maintains rules that aid it in classifying the beha-
vior of resources at the various cloud participants. According-
ly, this will help in having the capability of right resource as-
signment and achieving reliable collaborative cloud compu-
ting 
As discussed before, each cloud participant has characteristic 
data or data attributes that are stored locally and globally at 
CAs to define a set of features associated to participants. These 
features can be learnt according to the values of participants’ 
attributes, such as available resources, speed, and location. 
Those features might be time-based ones and can be expressed 
as a function of time. The mobility feature of a participant 
which depends on its speed is an example of these time-based 
features. Also, some features are time independent, such as the 
participant’s RAM and number of processing cores. 
Learning participants’ features by PS will aid in knowing the 
available resources at participant and estimating the behavior 
of each cloud participant with respect to those resources. For 
example, the PS can learn that high speed participants cannot 
offer long-term data storage. Consequently, the availability of 
heterogeneous participants’ resources can be determined ef-
fectively at each participant. 
For efficient resource forecasting, the PS operation is executed 
every reasoning window size, in time units, which is set by the 
GCM. The window size value is dynamic and altered by the 
GCM according to the frequency of received resources’ data 
updates and the size of modified participants’ attributes at the 
CA. The more recent changes in participants’ attributes are 
received at the CA, the more likely to have changes in the re-
source forecasting plan. Through each window size, the PS 
performs the following phases: 
The PS learns the more relevant set of attributes of each partic-
ipant via employing association rule learning (ARL) algorithm 
[30] [29]. In this phase, the PS investigates the more frequent 
attributes per each participant where these attributes will refer 
to the offered resources, characteristics of this participant, 
such as mobility and so on. As an example, the ARL algorithm 
might learn the following attributes for a participant: proces-
sor, cores, speed, storage, RAM, and operating system. 
Then, the PS  can classify the learnt attributes of all partici-
pants using probabilistic decision models that are built using 
Fuzzy-based weighted binary decision trees [31]. The proba-
bilistic decision models adopt Fuzzy classifiers, which names 
the possible output classes using defined Fuzzy membership 
functions (FMFs). Those FMFs describe the classification thre-
sholds on which each attribute will be classified to a specific 
class out of a set of output classes. For each registered partici-
pant’s resource, we will able to recognize the main classified 
attributes, called features, related to that resource. Then, En-
tropy-based binary decision trees are used by PS to select the 

more likely detected feature class at each tree level, or re-
source attribute, and to form a typical sequence of relevant 
weighted features related to the studied cloud participant’s 
resource. For each feature, we have two possible output 
classes. The binary information entropy H_2 (F)about a feature 
F class is defined in (1). 

            
Where  is the probability of classifying the feature in the 

first class; and is for the other class. 

The constructed decision models are dynamic that the used 
classifiers of embedded weighted binary decision trees are 
trained based on the stored data at the knowledge units of 
CAs through a reasoning window. Also, the decision models 
depend on the set of discovered features per participant’s re-
source in the cloud. Also, the models have categories which 
are formed according to the resource type and can be applied 
to every participant which possesses the same resource type. 
Each feature is considered as a binary random variable (RV) 
that it can take two values (e.g., numerical, string, etc.). The 
feature is considered as an independent RV with respect to 
other features, or RVs. The decision tree per resource consists 
of parent features and child features at various levels.  
 

For instance, if we have a mobile resource at a cloud 
participant with ID equals 10 that this resource has the 
speed attribute which is registered in the knowledge unit 
through a reasoning window of length 24 hours. According 
to the defined FMF, the speed attribute might be classified 
to high speed or low speed features. The registered data 
show that resource has 87% of its records with high speed 
and 13% of records with low speed. This means that 87% of 
the time all over the day, the participant’s resource is with 
high speed. So, the uncertainty about this information (i.e., 
classifying the resource feature as high speed) can be calcu-
lated by the entropy  for is approximately 0.56. Since 

, the more  value, the more uncertainty 
we will have about the discovered information. So, as 

 nears zero, the learnt feature is of high certainty. So, 
if  and , then the feature will classified to 
class c. 

At the final decision tree level, we will reach the more 
likely features’ sequence that can exist for the related stu-
died resource. The total information entropy concerning 
sequence of independent features of a resource will be the 
summation of all binary entropy of each individual feature. 
Equation (2) shows the entropy of resource’s independent 
feature sequence of length n.  

(2) 
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Figure 7.   The main operations of PS. 

Figure 8.   Fuzzy-based weighted binary decision tree for 
classifying computing resource. 

 
From (2), we can estimate the upper bound for 

 which will be  which equals  
where . We set a limit for learning and stor-
ing rules related to studied resources and their related 
features that the PS will keep the learnt feature sequence 
as a rule if   . Actually, we will have 
undoubtedly true classification and defined rule if 

 
- The PS adopts trained hidden Markov models [32] 

to estimate the behavior of participants’ resources ac-
cording to the input typical sequence of features, or input 
states, learnt from the previous phase. The estimation 
process for outputs relies on continuous input sequence 
with different Gaussian distributions. HMM is trained 
using unsupervised learning algorithm called Baum-
Welch algorithm. Then, HMM performs distribution mix-
ture for obtaining the most likelihood output sequence.  
From the most likelihood output sequence, the PS can 
generate a set of rules that define the behavior of re-
sources at all participants taking into consideration the 
condition that }.  

 

 
 
The HMM is defined with the following parameters (π , 

A, B) which are: 
• Initial state probability π vector: this defines the initial 

probability of each classified feature to be the first input fea-
ture in the input sequence to the HMM. 
• State transition probabilities A matrix: the matrix 

maintains Aij elements where each element defines the tran-
sition probability form classified feature i to another feature 
j. 
• The observation probability B matrix: this matrix re-

lates each input feature in an input sequence with a possible 
output through a defined probability. 

Fig. 7 illustrates the design and operation of the PS show-
ing its main building blocks, which employ the algorithms 
discussed before. The figure shows that PS learns behavior 
and rules related to three different resource types located at a 
cloud participant based on its maintained data at the know-
ledge units at the cloud. 

The following subsection will discuss an example which 
clarifies the operation of PS. 

Example 
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Fig. 8 shows the classified features for a computing server 
at a cloud participant based on using the Fuzzy-based 
weighted binary decision tree model. 

Calculating the total entropy of feature sequence of length 
4,  , according to (2) results in a value of 2.573 
where 

 

Then, this feature sequence is input to a trained HMM that 
it has two main output resource behaviors which are “reliable 
resource” and “unreliable resource”. According to the defined 
B matrix, all the four classified features have higher probabili-
ty related to the first behavior than the one related to second 
behavior. Here is an example of the B matrix that B: {{0.8, 0.2}, 
{0.7, 0.3}, {0.65, 0.35}, {0.9, 0.1}} where it consists of four rows r 
(i.e., number of features) and two columns c (i.e., number of 
behavior classes) 

Since, the total entropy < n/2 (i.e., 2), then the 
PS will not set a rule for this participant that his server is a 
reliable one. We can remark here that although the HMM out-
put a classified behavior for the feature sequence, the PS does 
not accept this output as a rule because it finds to some extent 
high uncertainty about this information. 

Collaborative Autonomic Resource Management System 
(CARMS): We design our CARMS architecture using the key 
features, concepts and principles of autonomic computing 
systems to automatically manage resource allocation and task 
scheduling to affect cloud computing in a dynamic mobile 
environment. 

 
Cloud Manager (CM): It provides a self-controlled operation to 
automatically take appropriate actions according to the results 
of the evaluation received from the Performance Analyzer, 
described below. The CM manages interactions to form, main-
tain and disassemble a cloud. A CM comprises four compo-
nents, a Service Manager (SM), a Resource Manager (RM), a 
Policy Manager (PoM), and a Participant Manager (PrM). A 
SM stores the request and its identifier. The SM maps the res-
ponses received from the participants with the service re-
quests from users, and the result is sent back directly to the 
user. The CM decomposes the requested service, upon receiv-
ing a cloud formation request, to a set of tasks.  Tasks of a re-
quested service need to be allocated to mobile resources. The 
RM handles the resource allocation on mobile nodes using its 
Resource Allocator component. Also, the Resource Allocator 
obtains the required information about the available resources 
by interacting with a GRCS. The Resource Allocator interacts 
with the registry of CA to store and retrieve the periodically 
updated data related to all participants within a cloud. The 
CM interacts with CyberX servers to assign a set of virtual 
resources in cells to these tasks according to the received SLA 
information from the CM. The PoM prevents conflicts and 
inconsistency when policies are updated due to changes in the 

demands of a cloud. The PrM manages the interaction be-
tween a cloud requester and resource providers, the cloud 
participants, to perform a SLA negotiation. 
Monitoring Manager: It includes a Performance Monitor unit 
which monitors the performance measured by monitoring 
agents. Then, it provides the results of these measurements to 
the Performance Analyzer component. The workload informa-
tion about the incoming request is periodically collected by the 
Workload Monitor component. 
Performance Analyzer: It continually analyzes the measure-
ments received from the Monitoring Manager to detect the 
status of tasks and operations, and evaluate both the perfor-
mance and SLA. The results are then sent to both the Cloud 
Manager and the Account Manager. 
Account Manager: In case of violation of SLA, adjustments are 
needed to the bill of a particular participant. These adjust-
ments are performed by the Account Manager component 
depending on the billing policies negotiated by the requester 
of cloud formation. 

 
5  CLOUDVIRTUALIZATION AND TASK MANAGEMENT   
CoCloud uses the trustworthy dynamic virtualization and task 
management layer to manage the cloud tasks and the running 
applications on the cloud. This layer virtualizes the cloud re-
sources creating a suitable execution environment for the ap-
plications. 
The Virtualization and task Management Layer (VML) uses 
the COA [27] features to enable applications to dynamically 
adapt to runtime changes in their execution environment.  
Such feature enables the virtualization and task management 
layer to tolerate high frequency task preemption and migra-
tion that might be induced by failures as a consequence of un-
expected resource mobility or power failure. Due to the nature 
of our resources the high level of heterogeneity is a major con-
cern for task deployment and migration. Using such vitaliza-
tion architecture adequately resolves this issue.  
Figure 9 shows the virtualization and task encapsulation 
process in CyberX based virtualization management.  

  
Figure 9.  The CyberX based virtulization manament 
VML enables the application to exchange real-time status and 
recommendation messages with the host Cell for administra-
tive purposes to enhance the Cell local application awareness 
and to enable application driven adaptation. The virtualiza-
tion and task management layer uses these messages to guide 
the Cell runtime quality-attribute manipulation towards accu-
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rate and prompt adaptation. Further, the virtualization and 
task management layer collects, analyzes and trustworthy-
share these messages and status reports, constructing a real-
time sharable global view of the Cell network. 
VML enhances the system resilience by multiple recovery 
modes to cover different application-requirements and host-
configurations. The virtualization and task management layer 
offers a prompt and accurate fine-grained recovery, hot-
recovery, for resourceful hosts executing critical applications, 
and a more resource efficient course-grained recovery, cold-
recovery, for less critical applications. In hot-recovery, the Cell 
can have one or more fully-alive replicas on different mobile 
nodes which can do achieve virtually no task failure down-
time but on the account of increasing resource usage. The 
cold-recovery might save some of the resources used by repli-
cas, by deploying a replacement of the failed Cell, while com-
promising some of the execution states, and increasing the 
failure downtime. The virtualization and task management 
layer uses the COA loosely coupled features to allow applica-
tions to seamlessly change their current active recovery modes 
based on context, environment, or application-objective 
change. 
VML layer is composed of a set of central powerful nodes or 
servers. These servers collaborate autonomously to manage 
the whole network of Cells. This platform is responsible for 
the organism creation “composition and deployment of Cells”, 
management, the host side API(s) “CCDNA”, real-time moni-
toring and evaluation of the executing Cells, and recovery 
management. Further, it provides the necessary management 
tools for system administrators to manage, analyze, and eva-
luate the working Cells/organisms. Figure 10 shows the VML 
architecture. The next subsections will briefly describe the 
main components. More detailed description can be found at 
[26] 
  

Figure 10. Virtualization management architecture 
 
Cloud Management at Control Node 
All related cloud management tasksare performed on fixed 
powerful control nodes. The following describes the main 

functionality of the main components running on such nodes: 
Auditing and Reputation Management Server (ARMS):Its 
main task is to monitor outgoing or incoming Cell administra-
tive messages for the lifetime of the Cell. This information is 
used to assist evaluating the trustworthiness of the Cell.  This 
server cooperates with the recovery tracking servers and 
routing nodes to frequently evaluate the Cell behavior for any 
malicious activities.  This server will hold comprehensive re-
ports about each Cell for the lifetime of the Cell.  A trust feed-
back will be generated from ARMS and send to the Trust 
Management Services which helps in the evaluation of the 
trustworthiness of a participant. 
Recovery and Checkpoint Tracking Server (RCTS):This moni-
tors, and stores checkpoints changes for all running Cells. 
Checkpoint updates are always enclosed as a part of the Cell 
frequent beacon message updates. RCTS is also responsible for 
reporting failure events by comparing the duration between 
consecutive beacon messages to a certain threshold matching 
the reporting frequency settings of each Cell. Failure events 
are validated by comparing the recently noticed reporting-
delay for a particular Cell to the average reporting-delay with-
in its neighbors and other Cells hosted on the same host. A 
Cell failure notice is reported to the global management serv-
ers with the last known failure recovery settings, checkpoint, 
and variant settings to start deploying replacement Cells. 
Global Management Server (GMS):The main task of this serv-
er is to manage the underlying COA infrastructure. GMS is 
responsible for Cell deployment, coordinating between serv-
ers, facilitating and providing a platform for administrative 
control. GMS is the only server authorized of issuing Cell ter-
mination signals. It can also force Cell migration or change the 
current active recovery policy when needed. GMS is responsi-
ble for assigning the infrastructure global policy, routing pro-
tocol, auditing granularity, registering/revoking new hosts, 
and keeping/adjusting the host-platform configuration file. 
The Data-Warehouse Server (DWS):It is the main components 
of the infrastructure that participates in the separation be-
tween the Data, Logic, and Physical-resources. DWSs are dis-
tributed through the Cell network, they are responsible for 
holding and maintaining all the data being processed, and any 
other sensitive data that the management units want to store. 
All running Cells are not permitted to store sensitive data on 
their local memory. All sensitive data has to be remotely stored 
in a specific DWS through the dedicated data channel. DWSs 
synchronizes their data independently. 
Distributed Naming Server (DNS):It is responsible for resolv-
ing the real host IP/Port mapping to the virtual Cell Id and 
organism names. The working Cells use this mapping at run-
time to direct incoming and outgoing communications. DNS is 
a major player in the COA’s separation of concerns that 
enables virtually seamless, Cell relocation, and workload tran-
sition in case of failure recovery. In case of Cell movement, the 
DNS will be instructed by the GMS to maintain communica-
tion redirection. 
 
Cloud Management at Compute Node 
GMS uses the resource-forecasting database to allocate re-
sources for the Cells, of the virtualization and task manage-
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ment layer, to be deployed on the Compute Node. The SM 
updates the task repository by the tasks that should be ex-
ecuted, and the code variants associated with it. The GMS en-
capsulates these variants into one of its Cells forming a suita-
ble container that matches one of the available resources. The 
selected resource will be the target of the Cell deployment 
where the CCDNA is installed. That resource shall accept the 
deployment package from the GMS, instantiate and execute 
the Cell. 
In case of failure, or unavailability, the GMS will relocate the 
Cells into new active resource seamlessly. All the concerns that 
might be involved with the task relocation will be autono-
mously and seamlessly handled by the virtualization and task 
management layer. The details of task relocation, recovery in 
case of failure or performance tuning using diversity employ-
ment, which has been addressed in [27], is omitted from this 
paper due to space limitation. 
 
6  EVALUATION 
 
6.1 Working Scenario 
For evaluation purposes, we present a scenario of dynamic 
resources in different-sized hospital models with 25, 50, 75, 
and 100 beds, respectively. The model involves different types 
of mobile devices such as Smartphones and Laptop Comput-
ers and semi-stationary devices such as on-board computing 
resources of vehicles in a long-term parking lot at a hospital. 
Such rather large pool of idle computing resources can serve 
as the basis of a CoCloud as a networked computing center. 
We start our evaluation by predicting the average number of 
participants in this scenario at hospitals of different sizes, 
which reflects the amount of computing resources that might 
participate in a CoCloud. Then, we perform evaluations, using 
the obtained average number of participants, to study the ef-
fects associated with the performance of the formed CoCloud. 
 
6.2 Expected Number of Participants in a Resource Pool 

Patients arrive at a time dependent rate λT(t), independent 
of the number of participants already participating in the re-
source pool at the hospital. The departure rate of participants 
is µT(t). Further, we assume that for all t≥0, λT(t) and µT(t) are 
bounded by the constants M1, m1 , M2, m2, where (0< m1; 0< 
m2) such that 

m1 ≤ λT(t) ≤  M1;   m2 ≤ µT(t) ≤   M2            (3) 

Consider the event {N(t) = k} occurs if the resource pool at 
the hospital contains k patients at time t, where (1≤ k ≤ N). The 
probability that the event {N(t) = k} occurs is Pk(t).  

Pk(t) = Pr [{N(t) = k }]        (4) 

We consider the general case where λT(t) and µT(t) are in-
tegrable functions as in [26]. So that if the expected number, 
E[NT(t)], of patients in the hospital at time t converges, the 
limiting behavior of E[NT(t)] as t →∞  can be written as 

Limt→∞E[NT(t)] =   Limt→∞  (λT(t)/µT(t))         (5) 

Where,  

       (6) 

Where n0 is the number of patients in the hospital at t=0. 
The success probability, p(t) , is given by 

                           (7) 

Patients arrival, λT(t), and departure, µT(t),  rates into/from 
the hospital are periodic functions of time, and can be ob-
tained as following: 

λT(t) = a + b sin θ (t)                         (8) 

µT(t) = c + d sin θ (t)                      (9) 

Where a, b, c, and d are constants. 

We can use the previous equations to get the expected 
number of cars, E[Nc(t)], in the parking lot at time t, where a 
relationship do exist between traffic and the number of arriv-
ing/departing patients. Therefore, we can model the expected 
number of cars as a percentage factor, v, using the following 
cars arrival, λC (t), and departure, µC (t),  rates 

(t) = v* (t)                              (10) 

µC(t) = x+ y sin θ (t)                        (11) 

Similarly, we can calculate E[Nc(t)] and we set the number 
of patients’ cars in the hospital at t=0 to be equal v*n0. The 
limiting behavior of E[Nc (t)] as t →∞  can be written as 

Limt→∞E[Nc (t)]  =   Limt→∞  (λC(t)/µC(t))     (12) 

Let E[Nm(t)] be the expected number of patients’ mobile 
nodes, in the hospital at time t, where each patient holds a 
mobile node. This allows us to write 

E[Nm(t)]   =E[NT(t)]                           (13) 

In addition, we consider the resources of the hospital’s 
employees as valuable participants to the formed cloud. Such 
resources may include computational power of the employees’ 
mobile devices as well as on-board computing resources of 
employees’ cars in the employee parking lots at the hospital. 
We set the expected number of employees, E[Ne(t)],   to be 

E[Ne(t)]   = Emin                                                 (14) 

Where, Emin is the minimum number of employees that 
should be located in the hospital in their regularly scheduled 
shifts.   

Similarly, we set the expected number of employee cars, 
E[Nec(t)],   as a percentage factor, f, of the number of em-
ployees. We can write 

E[Nec(t)]   = f*E[Ne(t)]                         (15) 

The total expected number of participants, E[Np (t)], in the 
hospitalcan be obtained by 

E[Np (t)]   = E[Nc(t)]  + E[Nm(t)]   + E[Nec(t)]   +E[Ne(t)]   (16) 
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Using the previously obtained expected number of partici-
pants, we can get the total number of available cells hosted by 
participants in a total resource pool.   

Using the previous equations, we set the simulation time to 
60 hours. We assumed that at t = 0, n0 equals35, 60, 85, 100 
patients, respectively, according to the size of the hospital. 
Similarly, we set the number of full-time staff employed, Emin, 

equals 35, 61, 94, 116 employees, respectively, according to the 
size of the hospital [33]. We set θ(t) to be πt/12 for a time unit 
equals one hour. Also, we use a quasi-periodic time-
dependent arrival and departure rates as follows. 

At hospital size equals 25 beds,  

λT(t) = 32+16[1+2exp(-0.2t)] sin (πt/12)          (17) 

λC(t) = 0.3* (32+16[1+2exp(-0.2t)] sin (πt/12))     (18) 

At hospital size equals 50 beds,  

λT(t) = 72+36[1+2exp(-0.2t)] sin (πt/12) (19) 

λC(t) = 0.3* (72+36[1+2exp(-0.2t)] sin (πt/12))     (20) 

At hospital size equals 75 beds,  

λT(t) = 112+56[1+2exp(-0.2t)] sin (πt/12) (21) 

λC(t) = 0.3* (112+56[1+2exp(-0.2t)] sin (πt/12))     (22) 

At hospital size equals 100 beds,  

λT(t) = 152+76[1+2exp(-0.2t)] sin (πt/12) (23) 

λC(t) = 0.3* (152+76[1+2exp(-0.2t)] sin (πt/12))     (24) 

Where, at each hospital size  

µT(t) = 2+ [1+ exp(-0.2t)] sin (πt/12)      (25) 

µC(t) = 2+ [1+ exp(-0.2t)] sin (πt/12)      (26) 

We computed the expected number of mobile nodes at 
time t as shown in Fig. 11 shows E[Np(t)]. The expected num-
ber of mobile nodes, at each hospital size, dropped as illu-
strated in Fig. 7and settles down to a constant value at 51, 97, 
150, and 192, respectively, after t > 20 hours of simulation. The 
pattern of the unstable fluctuation, before stabilization, de-
pends on the probability of the departure of initially partici-
pating nodes and the exponential component of arrival and 
departure rates.  

 
Figure 11.  The expected number of mobile 

nodes versus time. 

Similarly, Fig. 12 shows that evaluating the expected num-
ber of cars in the parking lot of the hospital stabilizes to a con-
stant number, at each hospital size, e.g. at 19, 36, 55, and 70, 
respectively, after 20 hours. 

Next, we turned our attention to compute the expected 
number of participants in the hospital versus time. Fig. 13 
shows E[Np (t)] plotted against time. The expected number of 
participants dropped as illustrated in Fig. 9. E[Np(t)] stabilizes 
at 70, 133, 205, and 262, at each size of a hospital, respectively, 
after t > 20 hours of simulation.  

 

Figure 12.  The expected number of cars versus time. 

 

Figure 13.  The expected number of participants versus time. 

6.3  Simulation Platform 
We choose the CloudSim toolkit [34] [35] to be our simula-

tion platform, as it is a modern simulation framework aimed 
at Cloud computing environments. To simulate the CoCloud 
environment in hospital, we have extended CloudSim to sup-
port node mobility by incorporating the Random Waypoint 
(RWP) model, where a mobile node moves along a line from 
one waypoint } to the next . These waypoints are un-
iformly distributed over a unit square area. At the start of each 
leg, a random velocity is drawn from a uniform velocity dis-
tribution.  

We designed Java classes for implementing the spatiotem-
poral data related to resources and their future availability 
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which is obtained from the calendaring mechanism. In addi-
tion, we edited the CloudSim to implement our proposed P-
ALSALAM algorithm. 

In our evaluation model, an application is a set of tasks 
with one primary task executed on a primary node. Each task 
runs in a single VM which is deployed on a participant node. 
VMs on participating nodes could only communicate with the 
VM of the primary task node and only when a direct ad-hoc 
connection is established between them.  

Assumptions 
The following assumptions are used in all simulation eval-

uations.  

• Communication between nodes is possible within a li-
mited maximum communication range, x (km). Within 
this range, the communication is assumed to be error 
free and instantaneous. 

• For scheduling any application on a VM, First-Come, 
First-Served (FCFS) is followed. 

• For calculating the collision delay, we consider the 
worst case scenario, a saturation condition, where each 
node has a packet to transmit in the transmission range. 

• For simplicity, a primary node collects the execution re-
sults from the other tasks which are executed on other 
participating nodes in a cloud.  

• A SaaS model is only considered in our model.  

6.4 Simulation Evaluation 
We start our evaluation by studying the effects associated 

with execution of applications in a CoCloud, consists of sta-
tionary and mobile devices, using different scheduling algo-
rithms, .i.e., Proactive Adaptive List-based Scheduling and 
Allocation AlgorithM (P-ALSALAM) [8], which determines 
the best participants based on the availability of its resources 
to participate in a cloud and the random reliability-based al-
gorithm, which does not use this information, where nearby 
mobile nodes with random availability are selected to execute 
the submitted application. 

Participant nodes are characterized by the number of 
processing cores, CPU performance in terms of Millions In-
structions Per Second (MIPS), amount of RAM, storage and 
network bandwidth.  

In our evaluation model, each task has a pre-assigned in-
struction length and runs in a Cell. A Cell matches the smallest 
computational power available in any participants, which is 
simulated as a single virtual machine (VM) deployed on a par-
ticipant. A VM can be migrated out from the participating 
node as the node becomes unreliable to execute a task. Migra-
tions happen when communications are established among 
participating nodes.  

We modify the simulation to include spatiotemporal data, 
future availability, obtained from the calendaring mechanism. 
Also, we consider that participating nodes cannot always 
function well all the time and may fail. In our evaluation, we 
only consider the cold-recovery mode in case of node failure. 
We set the number of inactive nodes to be sampled following 
a Poisson Process during a time t. 

Metrics and Parameters  
We use several metrics to evaluate the performance of our 

PlanetCloud and its subsystems as follows. 

1. The average application execution time, which is the 
time elapsed from the application submission to the applica-
tion completion.  

2. The mean number of VM migrations, which is the 
number of VM migrations during the simulation time. 

We set parameters in the simulation according to the max-
imum and minimum values shown in Table 2.  

TABLE 2 
PARAMETERS 

Parameters Values Parameters Values 
Average Mobile 

Node Speed 
(Uniform dis-

tribution) 

1.389 
(m/sec) 

Number of  
tasks/Application 

10 - 70 

Communication 
range 

0.1-1 
(km) 

Inactive Node 
rate 

 (Poisson 
Process) 

1/45 -1/15 
(Node/Sec) 

Simulation Setup 
We consider a CoCloud, where a CoCloud at each size of a 

hospital is composed of previously obtained stabilized num-
ber of mobile nodes, in Fig. 7, and stabilized number of semi-
stationary cars, in Fig. 8, with heterogeneous characteristics: 
512 or 1024 MB RAM, 4 GB Storage, and 54 MB bandwidth. 
Each node may have one or two cores with processing capabil-
ities of 2000 or 7500 (MIPS), respectively. However, we set all 
cars to have the highest computing configurations. In our 
evaluations, we create VMs each has one processing core with 
processing capability 1256 MIPS and 512 MB RAM.  

Results of our evaluations are collected from different si-
mulation runs and the value of sample mean is signified with 
t-distribution for a 95 % confidence interval for the sample 
space of 30 values in each run. 

In our evaluation, we consider that every car has a fixed 
location. We consider that every participating car can always 
function well all the time with high reliability and does not 
fail. However, we consider that the mobility pattern of mobile 
nodes follows a Random Waypoint (RWP) model. Also, each 
node has an average speed equals 1.389 (m/sec). We consider 
that mobile nodes are different in their reliability, in terms of 
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future availability and reputation, which follow the values of 
the arrival rate of inactive nodes defined in Table 2. 

Results 
Connectivity effect at different number of tasks 

The average execution time of an application is investi-
gated at different communication ranges of stationary nodes, 
cars, ranging from 0.1 to 1 (km) when we consider one appli-
cation is submitted to be executed, with different number of 
tasks, ranging from 20 to 70 tasks. We consider a small-sized 
hospital (25 beds) with total number of participant equals 70 
(19 cars and 51 mobile nodes). Also, we consider that all nodes 
are reputable and each mobile node has a transmission range 
equals 0.4 km, and its average speed equals 1.389 (m/sec). We 
set the task length to be equal to 500000 MI. We perform this 
evaluation with an arrival rate of inactive nodes equals 1/45 
(nodes/sec). Where, we consider that the effect of reliability of 
mobile nodes is neglected at this arrival rate of inactive nodes. 

Fig. 14 depicts a comparison between the results of apply-
ing both P-ALSALAM and random reliability-based node se-
lection algorithms in terms of the average execution time of an 
application at a small-sized hospital. Results show that P-
ALSALAM significantly outperforms the random reliability-
based node selection algorithm in terms of the average execu-
tion time of an application at all transmission ranges. Similar-
ly, the average number of VM migrations when applying P-
ALSALAM significantly is smaller than the case when apply-
ing the random reliability-based node selection algorithm as 
shown in Fig. 15. 

 

Figure 14.  Average execution time of an application when applying differ-
ent reliability based algorithms at a small-sized hospital (25 beds). 

 

Figure 15.  Average number of VM migrations when applying different 
reliability based algorithms at a small-sized hospital (25 beds). 

The results of Fig. 16show that the average execution time 
of an application has a higher value at a small communication 
range, e.g. 0.1 (km). This is because the smaller the communi-
cation range the larger the probability to depend on mobile 
nodes, which may fail, as participants in a CoCloud, where the 
communication delay is dominant. Consequently, the average 
number of migrations of a VM increases at a smaller commu-
nication ranges as shown in Fig. 17. While, a better perfor-
mance is obtained at higher communication ranges, e.g. 1 
(km). Results shows that P-ALSALAM always has a better 
performance at a small number of submitted tasks. 

 

Figure 16.  Average execution time of an application vs. communication 
range (km) when applying P-ALSALAM algorithms at a small-sized hos-
pital at different number of submitted tasks. 

 

Figure 17.  Average number of VM migrations vs. communication range 
(km) when applying P-ALSALAM algorithms at a small-sized hospital at 
different number of submitted tasks. 

Density effect at different communication ranges of 
stationary nodes 

We repeat the evaluation of P-ALSALAM algorithm at a 
different size of a hospital, i.e., small, medium, large or huge 
hospital which represents different node densities when we 
consider different communication ranges of stationary nodes, 
e.g. 0.2 and 1 (km), respectively. We set the arrival rate of inac-
tive nodes to be 1/45 (Node/Sec). We consider one application 
is submitted to be executed, with a number of tasks equals to 
70. Fig. 18 shows that a small-sized hospital with low node 
density, e.g. 70 (Nodes/Km²), has a high average execution 
time of an application. This is because of the average number 
of stationary reliable cars, e.g. 19, is small when compared 
with a larger number of stationary cars at high density value. 
Conversely, a better performance is obtained at a huge-sized 
hospital with high node density, e.g. 262 (Nodes/Km²), when 
the average number of stationary reliable cars is large, e.g. 70. 
This is because the performance is enhanced when our P-
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ALSALAM algorithm can assign the requested tasks to a larg-
er number of reliable resources and less depends on variable 
reliability mobile nodes. Similarly, Fig. 19 shows that the 
higher the node density the higher dependency on reliable 
and connected stationary nodes to execute the submitted 
tasks, and therefore the lower probability of VM migrations is 
obtained. 

 

Figure 18.  Average execution time of an application vs. node density 
(nodes/km²) when applying P-ALSALAM algorithms at different-sized hos-
pital models at different stationary nodes’ communication ranges. 

 

Figure 19.  Average number of VM migrations vs. node density 
(nodes/km²) when applying P-ALSALAM algorithms at different-sized hos-

pital models at different stationary nodes’ communication ranges. 

Density effect at different arrival rates of inactive nodes 
Similarly, we repeat the evaluation of P-ALSALAM algo-

rithm at a different arrival rate of inactive nodes equals 1/45 
and 1/15 (Node/Sec), respectively. Fig. 29, showed that the 
average execution time of an application at a large density of 
nodes, e.g. 262 (Nodes/Km²) has a better performance than the 
case of a small density of node, e.g. 70 (Nodes/Km²), at the 
same number of tasks, e.g., 20 tasks and the same arrival rate 
of inactive nodes, e.g. 1/45 (Node/Sec). This is because the 
larger the density of nodes the more dependency on reliable 
stationary nodes. However, the smaller the density of nodes 
the more dependency on variable reliability mobile nodes that 
could fail, and therefore the performance may degraded due 
to the migration delay.  Results depict that the effect of node 
failure may be neglected at arrival rate of inactive nodes 
equals 1/45 (Node/Sec). 

 

Figure 20.  Average execution time of an application vs. node density 
(nodes/km²) when applying P-ALSALAM algorithms at different-sized hos-
pital models at different arrival rates of inactive nodes. 

Reliability Effect 
In this evaluation, we evaluated the average execution time 

of an application and the mean number of VM migrations at a 
small-sized hospital with node density equals 70 (Nodes/Km²) 
at a high load of submitted tasks, e.g. 70 tasks. To neglect the 
effect of connectivity we consider the communication range of 
a stationary node equals 1 (km). Also, we consider that all 
nodes are reputable and each mobile node has a transmission 
range equals 0.4 km, and its average speed equals 1.389 
(m/sec). The average execution time of an application is inves-
tigated at different values of the arrival rate of inactive nodes, 
ranging from 1/45 to 1/20 (nodes/sec). 

Fig. 21 shows that at a larger value of arrival rate of inac-
tive nodes, e.g. 1/20 (nodes/sec), the worst performance is ob-
tained than in the case of results at a smaller arrival rate of 
inactive nodes, e.g. 1/45 (nodes/sec). This is because of the 
probability a node could fail is high when compared with a 
lower arrival rate of inactive nodes value. Consequently, the 
average number of migrations of a VM increases when the 
arrival rate of inactive nodes is increased as shown in Fig. 22.  

The node failure forces a VM to migrate to another reliable 
node. This leads to an extra time overhead of VM migration 
which is added to the execution time of an application. These 
results showed that our PlanetCloud performs well in terms of 
the average execution time of application with a smaller num-
ber of VM migrations even in case when a large number of 
mobile nodes have left the CoCloud.  

 
Figure 21.  Average execution time of an application at different arrival 
rates of inactive nodes at a small-sized hospital (25 beds). 
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Figure 22.  Average number of VM migrations at different arrival rates of 
inactive nodes at a small-sized hospital (25 beds). 

Scalability and Management Overhead effect 
In this experiment, we consider a CoCloud at three differ-

ent configurations, as depicted in Table III. A distinct VM in-
stance is created for each task; therefore there is no overhead 
of VM scheduling for task processing. We set the number of 
stationary nodes equals 10 nodes, and all of them have the 
highest computing configurations. On the other hand, we con-
sider that each mobile node has a transmission range equals 
0.2 km, and its average speed equals 1.389 (m/sec). The per-
formance is investigated at arrival rate of inactive nodes 
equals 1/50 (nodes/sec). 

We start this evaluation by investigating the performance 
of a CoCloud as more nodes, resources, are added to the sys-
tem, ranging from 40 to 100 nodes, when we consider one ap-
plication is submitted to be executed, with a fixed number of 
tasks equals 35.  

TABLE 3 
COCLOUDS WITH DIFFERENT HOST CONFIGURATIONS. 

 Values of Resource Configurations 

Parameters low  Medium  High  

Number of 

CPUs/node 
1, 2 2, 2 2, 4 

Processing 

Capabilities 

2000 ,7500 

(MIPS) 

7500, 14564 

(MIPS) 

7500, 49160 

(MIPS) 

RAM 
512, 1024 

(MB) 

1024 , 2048 

(MB) 

1024 , 4096 

(MB) 

Storage 4 (GB) 16 (GB) 16 (GB) 

Bandwidth 54 (MB) 54 (MB) 54 (MB) 

Fig. 23 depicts a comparison between the results of apply-
ing both P-ALSALAM and random reliability-based node se-
lection algorithms in terms of the average execution time of an 
application at a CoCloud with low resource configurations. 
Results show that P-ALSALAM significantly outperforms the 
random reliability-based node selection algorithm at all node 
densities. Analysis of the results indicates that average execu-

tion time of an application decreases with the increasing in 
number of nodes that could participate in a CoCloud, i.e. more 
resources are added to a CoCloud computing pool. This is 
because the more resources added to the computing pool of a 
CoCloud, the larger the probability to select a new VM place-
ment, another node, where a VM could migrate to. This helps 
the migrated VM to get better resource availability and to 
scale up its computation. While, noticeable performance de-
gradation in P-ALSALAM results appear at higher node den-
sities, e.g. 100 (Nodes/Km²), due to a great effect of the delay 
due to collisions in addition to the transmission delay. 

 
Figure 23. Comparison of application average execution time as more 

resources are added to a CoCloud at different reliability based algorithms. 

Similarly, the average number of VM migrations when ap-
plying P-ALSALAM is smaller than the case when applying 
the random reliability-based node selection algorithm as 
shown in Fig. 24.Results show that the higher the node density 
the lower probability of VM migrations is obtained. This is 
because of the probability a node could fail is high at high 
node density, e.g. 40 (Nodes/Km²), at the same arrival rate of 
inactive nodes, when compared with a lower node density, 
e.g. 100 (Nodes/Km²). Consequently, the average number of 
migrations of a VM decreases when the density of nodes is 
increased as shown in Fig. 24. 

 
Figure 24. Comparison of Average number of VM migrations as more 

resources are added to a CoCloud at different reliability based algorithms. 

We repeat the evaluation both P-ALSALAM and random 
reliability-based node selection algorithms when we consider 
different task load, i.e. the number of submitted tasks, ranging 
from 10 to 60 tasks. In this part, we set the density of nodes to 
be 70 (Nodes/Km²).  Fig. 25 shows noticeable differences be-
tween results of the two cases, with/without using the P-
ALSALAM, appear at a higher number of submitted 
tasks/application, e.g. 60 tasks/application. Also, results show 
the increasing trend in average execution time of application 
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with the increasing in number of submitted tasks, and conse-
quently the number of VMs. This is because a distinct VM in-
stance is created for each task. Consequently, the deployment 
and management of each VM requires additional overhead for 
application processing which increases the execution time of 
an application. In a CoCloud, the time required to migrate a 
VM from one node to another constitutes the time overhead of 
VM migration. It is clear that more use of VMs makes the ex-
ecution time of application degrades faster. Also, the figure 
suggests that relationship between the number of submitted 
tasks, their VMs, and the execution time of application is li-
near. 

Similarly, the results of the average number of VM migra-
tions when applying P-ALSALAM significantly outperform 
the results when applying the random reliability-based node 
selection algorithm as shown in Fig. 26. Results show that 
more use of VMs the more probability of VMs migrations 
could occur. 

 
Figure 25. Comparison of application average execution time of a CoC-
loud  with low resource configurations as the number of submitted tasks 
increases when applying different reliability based algorithms. 

 
Figure 26. Comparison of Average number of VM migrations of a CoCloud  
with low resource configurations as the number of submitted tasks in-
creases when applying different reliability based algorithms. 

In the next evaluation, we evaluated P-ALSALAM algo-
rithm at different resource configurations of a CoCloud as 
shown in Table III.Fig. 27 depicts a comparison between the 
application average execution times, at density of nodes 
equals 70 (Nodes/Km²), when we consider different the num-
ber of submitted tasks, ranging from 10 to 60 tasks.  Results 
show that the higher the computing capabilities of a node par-
ticipating in a cloud, the better performance is obtained. This 
is because the higher resource configurations of a participating 
node the higher ability of our P-ALSALAM Algorithm to allo-

cate many VMs to a single physical node and to perform effi-
cient VM consolidation. Consequently, the efficient selectivity 
of a reliable node, provided by our P-ALSALAM, decreases 
the inter node VM migrations and their management over-
heads as depicted in Fig. 28. 

 
Figure 27.  Application average execution time comparison  for CoClouds 
with different resource configurations when applying P-ALSALAM Algo-
rithm. 

 
Figure 28.  Average number of VM migrations comparison for CoClouds 
with different resource configurations when applying P-ALSALAM Algo-
rithm. 

Findings 
Our findings can be summarized as follows: 

• The performance is affected by the percentage of the 
number of stationary nodes within the total density of avail-
able nodes. It means the more stationary reliable nodes, par-
ticipate in a CoCloud, the less dependency on mobile varia-
ble reliability nodes. This could enhance the performance of 
the submitted application. 

• A better performance may be obtained, even at a 
shorter transmission range, if we apply our P-ALSALAM 
algorithm. This is because our algorithm frequently resche-
dules the delayed tasks and this minimizes the effect of 
communication delay.  

• Performance enhancement of a CoCloud is provided 
by applying the efficient dynamic VM consolidation. This 
could be achieved by selecting reliable and powerful com-
puting nodes to participate in a CoCloud. This enhances 
both scalability and management overhead by reducing the 
number of inter host VM migrations.  
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• The performance is affected by the percentage of the 
reliable resources that could be added to the computing 
pool of a CoCloud. It means the more reliable nodes, partic-
ipate in a CoCloud, the larger the probability to select a new 
VM placement, where a VM could migrate to. This leads to 
get better resource availability and scalability. 

7  CONCLUSION  
In this paper, we proposed PlanetCloud, a collaborative 

cloud management platform with an intrinsic support for 
highly-mobile heterogeneously-composed and configured 
clouds. Our construction fulfills the essential characteristics of 
the cloud computing model and offers different service mod-
els. Our design liberates cloud computing from being con-
cerned about resource constraints. PlanetCloud is powered by 
a cloud management subsystem for resilient cloud operation 
on dynamic mobile resources to provide stable cloud in a con-
tinuously changing operational environment. Also, Planet-
Cloud is powered by a resource management subsystem 
which enables efficient use of idle mobile resources, by using 
collaborative autonomic resource management and providing 
a global mobile and stationary resource discovery, forecasting 
and monitoring. Additionally, this work presents our vision to 
enhance the prediction accuracy of resource availability in-
cluding  the descriptions of probabilistic models and artificial 
intelligence algorithms that could be implemented. 

Analytical and simulation results showed that PlanetCloud 
can safely and reliably provide and maintain the needed com-
putational power to form a reliable cloud operating in a dy-
namic, unstable, and heterogeneous resource environment. 
Also, results showed the benefits of enabling resource collabo-
ration, provided by PlanetCloud, to achieve better capability 
to minimize management overhead. Additionally, results 
showed that PlanetCloud can “softly” guarantee reliable re-
source provisioning, transparently maintaining applications’ 
QoS and preventing service disruption in highly dynamic en-
vironments. 

Our ongoing research includes the following. 

1) Develop a security mechanism to preserve the privacy 
and security constraints of a cloud resource provider, while 
allowing multiple users to share its resources and data for 
calendaring. There is a need to support distributed data access 
and computations without compromising the raw data of 
cloud nodes; and 

2) Extend our proposed architecture to enhance the 
prediction accuracy of resource availability by utilizing 
complementary data sources such as from social networking. 
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