
International Journal of Scientific & Engineering Research, Volume 8, Issue 2, February-2017 550
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

Resilient Collaborative Cloud Management in
Mobile Environments

Ahmed A. Khalifa, Mohamed Azab, Bassem Mokhtar, Mohamed Eltoweissy

Abstract— We are witnessing exponential growth in the number of powerful, independendant, multiply-connected, energy-rich stationary
and mobile computing devices.We claim that cloud computing can be realized over such potentially scattered infinite pool of resources.
However, Given the contemporary resource-allocation, virtilization-management, and task-management mechanisms supporting modern
clouds, it is impossible to construct a cloud that can autonomously adapt to such real-time dynamic variation of heterogeneously-composed
potentially- mobile resources. To this end, we propose CoCloud, a comprehensive collaborative cloud management platform, for enabling
both resource-infinite computing paradigm over stationary and mobile nodes, and a true on-demand cloud computing. A reference model is
presented to reflect CoCloud ability to serve different service delivery models. CoCloud’s Global Resource Positioning System (GRPS)
employs a global mobile and stationary resource discovery and monitoring to globally position active resources based on a dynamic
spatiotemporal calendar. GRPS provides dynamic real-time scheduling, forecasting and tracking of idle, mobile and stationary, resources.
Resources are provisioned through CoCloud’s smart Virtualization Management Layer (VML). VML fractionizes a user’s application;
employs a vast number of dynamic, resource-aware micro virtual machines to encapsulate such fractions and facilitate capsule hosting on
matching cloud hardware resources. Such employment enables seamless execution over heterogeneous resources, lightweight load
migration, and low cost of failure. Using analysis and simulations, results show that CoCloud can guarantee reliable resource provisioning,
transparently maintaining applications’ QoS, and preventing service disruption in highly dynamic environments. Also, CoCloud resource
collaboration enhances both application performance and management overhead by reducing the number of inter-host VM migrations as
well as the communication delay.

Index Terms— Cloud Computing, Mobile Computing, Collaborative Computing, Distributed Resource Management, Virtualization.

—————————— ——————————

1 INTRODUCTION

ITH the emergence of cloud computing and the ad-
vances in mobile computing technologies, the mobile
cloud computing (MCC) paradigm was introduced.

There are two types of MCC architectures [1-5]:1) a MCC of-
fering access and service delivery to users through their mo-
bile devices where all computations, data handling, and re-
source management are performed in the static cloud to of-
fload the computational workload from the mobile nodes to
the cloud [1] [2] [3]; and 2) utilizing the idle resources of mo-
bile devices and enabling them to work collaboratively as
cloud resource providers [4] [5].
In this paper, and in a prior series of papers [6] [7] [8] [9] [10],
we adopt and extend the latter definition of MCC as cloud
computing, through the collaboration and virtualization of
heterogeneous, mobile or stationary, scattered, computing
resources forming a collaborative ad-hoc cloud platform that
provisions computational services to its users. We term such
cloud construction, Dynamic Collaborative Cloud, or CoCloud
for short.

Current propositions for MCC solutions, [4] [5] [11] [12] [13],
are primarily computing-cluster like rather than cloud-like
systems. These approaches facilitated the execution of a cer-
tain distributed application(s) hosted on a stationary/semi-
stationary stable mobile environment. However, no prior re-
search work has realized the essential characteristics of the
cloud model as defined by the National Institute of Standards
and Technology (NIST) [14].
In order to build a CoCloud, there are multiple challenges that
have to be addressed. These challenges are as follows.
Current resource management and virtualization technologies
do not readily provide a virtualization layer that can autono-
mously adapt to the real-time dynamic variation, mobility,
and fractionalization of such infrastructure [4] [5]. Conse-
quently, these limitations make it almost impossible to isolate
the resource layer concerns from the executing code logic.
Such isolation is an enabler for the cloud to operate and provi-
sion its basic services such as, seamless task deployment, ex-
ecution, migration, dynamic/adaptive resource allocation, and
automated failure recovery.
Further, given the dynamic nature of the mobile hardware
resources, resource allocation is another vital issue that needs
to be addressed to construct a resilient collaborative cloud.
Such cloud has a dynamic nature as nodes, usually having
heterogeneous capabilities, may join or leave the formed cloud
varying its computing capabilities. Also, the number of reach-
able nodes may vary according to the mobility pattern of these
nodes. However, most of the existing task scheduling and re-
source allocation algorithms [15] [16] [17] [18] [19] did not
consider the prediction of resource availability or the connec-
tivity among mobile nodes in the future which affects the per-
formance of submitted applications. Therefore, for the cloud to

W

————————————————
• Ahmed A. Khalifa is currently an Assistant Professor in Switching and

Traffic Department, National Telecommunication Institute (NTI), Cairo,
Egypt, Egypt.
E-mail: akhalifa@nti.sci.eg

• Mohamed Azab is currently a Researcher in IRI, The City of Scientific
Research and Technological Applications, Egypt.
 E-mail: mazab@vt.edu

• Bassem Mokhtar is currently an Assistant Professor in Department of
Electrical Engineering in Alexandria University, Egypt.

 E-mail: bmokhtar@alexu.edu.eg
• Mohamed Eltoweissy is currently a Professor in Department of Computer

and Information Sciences, Virginia Military Institute, Virginia, USA
 E-mail: eltoweissymy@vmi.edu

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 8, Issue 2, February-2017 551
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

operate reliably and safely, we need to accurately specify the
expected amount of resources that will participate in the cloud
as a function of time to probabilistically ensure that we will
always have the needed resources at the right time to host the
requested tasks.
Unfortunately, the mobile resources are highly isolated and
non-collaborative. Even for those resources working in a net-
worked fashion, they suffer from limited self and situation
awareness, and collaboration. Additionally, given the high
mobile nature of these devices, there is a large possibility of
failure such that permanent connectivity may not be always
available. This problem is common in dense mobile wireless
networks due to traffic congestion and network failures [20].
In addition, mobile nodes cannot collaboratively contribute to
form a cloud anymore if they are susceptible to failure for
many reasons, e.g., being out of battery or hijacked. Existing
explicit failure resolution and fault tolerance techniques were
not effifective enough to guarantee safe and stable operation
for many of the targeted applications limiting the usability of
such mobile resources.
Consequently, there is a need for a solution that effectively
and autonomically manages the high resource variations in a
dynamic cloud environment while including the different
main types of service offerings and satisfying the five essential
characteristics of the cloud model defined by NIST [14].This
solution should include autonomic collaborative components
for service and resource discovery, scheduling, allocation,
monitoringand forecasting to provide elastic and resilient
CoCloud.
In this paper, we address the aforementioned challenges by a
set of interrelated collaborative solutions (Pillars) towards an
actual dynamic collaborative cloud management platform,
CoCloud as shown in Fig. 1. However, we presented each of
these pillars independently in previous works. Additionally,
we perform new evaluations, in this paper, to study the effects
of connectivity, density of nodes, reliability, and scalability
and management overhead associated with the performance
of the formed CoCloud.
 Our contributions are to (1) provide a more comprehensive
approach, that includes all previous works, which shows the
overall architecture of our approach; (2) solve the main limita-
tions of the current attempts towards realizing CoCloud
against the essential characteristics of the cloud model as de-
fined by NIST; (3) present a reference model to provide the
different main types of X service offerings using our CoCloud;
and (4) present our vision and descriptions of probabilistic
models and artificial intelligence algorithms implemented in
the Prediction Service (PS) Module that enhance the prediction
accuracy of resource availability.
 CoCloud enables both a new resource-infinite computing
paradigm using cloud computing over stationary and mobile
nodes, and a true ubiquitous on-demand cloud computing.
This has the potential to liberate cloud users from being con-
cerned about resource constraints and provides access to
cloud anytime and anywhere. CoCloud provides the right
resources on-demand, anytime and anywhere, to form an ac-
tual collaborative cloud formed over hybrid mobile and sta-
tionary computing resources, while providing the main cloud

service delivery models (PaaS, IaaS and SaaS) [14].
CoCloud synergistically manages 1) resources to include re-
source harvesting, forecasting and selection, and 2) cloud ser-
vices concerned with resilient cloud services to include re-
source provider collaboration, application execution isolation
from resource layer concerns, seamless load migration, fault-
tolerance, and task deployment, migration, revocation, etc.
Specifically, the main novelty in this work is the developed
CoCloud pillars, which are the resource and cloud manage-
ment platforms discussed as follows.

CoCloud Resource Management
Global Resource Positioning System (GRPS)
Provides global mobile and stationary resource discovery and
monitoring. A novel distributed spatiotemporal resource ca-
lendaring mechanism with real-time synchronization is pro-
posed to mitigate the effect of failures occurring due to unsta-
ble connectivity and availability in the dynamic mobile envi-
ronment, as well as the poor utilization of resources. This me-
chanism provides a dynamic real-time scheduling and track-
ing of idle mobile and stationary resources. This would en-
hance resource discovery and status tracking to provide access
to the right-sized cloud resources anytime and anywhere [10].
Collaborative Autonomic Resource Management System (CARMS)
Efficient use of idle mobile resources.Our platform allows
sharing of resources, among stationary and mobile devices,
which enables cloud computing systems to offer much higher
utilization, resulting in higher efficiency. CARMS provides
system-managed cloud services such as configuration, adapta-
tion and resilience through collaborative autonomic manage-
ment of dynamic cloud resources and membership. This helps
in eliminating the limited self and situation awareness and
collaboration of the idle mobile resources [21].

CoCloud Cloud Management
Architecture for resilient cloud operation on dynamic mobile
resources to provide stable cloud in a continuously changing
operational environment. We presented a preliminary version
of this architecturein [7] . Such goal is achieved by using
trustworthy fine-grained virtualization and task management
layer, which isolates the running application from the under-
lying physical resource enabling seamless execution over hete-
rogeneous stationary and mobile resources. This prevents the
service disruption due to variable resource availability. The
virtualization and task management layer comprises a set of
distributed powerful nodes that collaborate autonomously
with resource providers to manage the virtualized application
partitions.
The rest of the paper is organized as follows. In Sections 2 and
3, we give an overview of related works and CoCloud, respec-
tively. We then detail the architecture of the proposed ap-
proach to provide resource and cloud management in a dy-
namic environment in Sections 4 and 5, respectively. In Section
6, we present a scenario of operation of our approach discuss-
ing an evalautuon study of the presented approach. Finally,
we conclude in Section 7 and outline open research issues.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 8, Issue 2, February-2017 552
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

2 RELATED WORK
The state of the art in research shows that some research work
discussed the idea of forming MCC platform relaying on the
hardware resources provisioned by stationary or semi-
stationary devices. However, these solutions presented com-
putational-clusters hosting certain distributed application(s)
rather than generic computing-clouds. In the next subsections
we will briefly discuss the latest research targeting CoClouds
classified by the associated research objective:

Mobile-resource Sharing
In [4], authors proposed a preliminary design for a manage-
ment framework that exploits the resources of a collection of
nearby mobile devices to construct a virtual ad hoc mobile
computing cluster. Therefore, it is a limited scenario that did
not consider high node mobility cases where connectivity is
not stable, leading to disconnections and faults. Similarly, ex-
periments for job sharing were conducted in [11]over a stable
ad-hoc network linking a user group of mobile device. Unfor-
tunately, they shared the same limitation as the aforemen-
tioned work; they presented a computing cluster management
platform with no consideration for resource mobility, hetero-
geneity, dynamic connectivity of resources.
Hyrax platform [5]was one of those who introduced the con-
cept of using mobile devices as computation resources. The
platform used a central server to utilize data and execute
computing jobs on networks of homogeneously configured
android smart phones. Hyrax did not consider the general
scenario where hardware resources are heterogeneously con-
figured and highly mobile. The system offered limited man-
agement automation, Hyrax did not consider a real users’ mo-
bility where mobile resources should be automatically and
dynamically discovered, scheduled, allocated in a distributed
manner largely transparent to the users.
In [12] researchers demonstrated the feasibility of exploiting
the resources in mobile devices to execute work units as part
of a grid and upload results to a server. However, the model
of this approach was specifically developed to a single mobile
hardware device or operating system. A more generic solution
presented in [13], they proposed a collaborative framework
that enables mobile devices to participate in executing compu-
tation-intensive tasks in a computing cluster to expand the
shared resources. They focused only on task partitioning and
offloading where a ratio of participation is determined de-
pending on many factors, e.g., the system capability, the mo-
bile device’s performance, and the network state. However,
the proposed framework did not consider a real mobile net-
work environment that is relatively unstable. The work pre-
sented in [22] addresses how the mobility could enhance the
performances of distributed computation and the resilience of
services in computing clusters formed from mobile ad-hoc
networks. Authors show that improvement can be achieved in
the performance of distributed computation with even a small
percentage of highly mobile nodes in highly localized net-
works.
Most of the previously mentioned research works [4] [11] [22]
[13] did not take the rapid elasticity, the heterogeneity of
pooled resources or the broad network access characteristics

into considerations.

Vehicular Cloud
Exploiting the virtually unlimited power supply in vehicles ,
researchers in [23] [24] [25] discussed the possibility of having
a MCC using a powerful on-board computers augmented with
huge storage devices hosted on stationary vehicles acting as
networked computing centers on wheels. Given the limited
mobility of such solutions, we do not consider them as a rea-
listic implementation of a generic computing cloud. Addition-
ally, the proposed approaches only focused on one delivery
service model, the IaaS and provided a virtual environment to
satisfy specific client application. In [26], authors presented an
overview about a datacenter architecture for the management
of physical resources of vehicular nodes. However, this scena-
rio is considered as a stable environment, such that the long-
term parking lot of an international airport guarantees that
there are at least a specific number of vehicles parked in the
airport at any time and ready for utilization. Therefore, this
solution does not provide the rapid elasticity characteristic. In
addition, no solutions were provided for dynamic environ-
ments with neither heterogeneous resources nor task schedul-
ing and resource allocation.

Limitations in Current Approaches
The main limitations of the current attempts towards realizing
CoClouds against the essential characteristics defined by the
NIST are summarized as shown in Table 1.

TABLE 1
THE MAIN LIMITATIONS OF THE CURRENT COCLOUDS AGAINST THE

ESSENTIAL CHARACTERISTICS DEFINED BY THE NIST

NIST Essential
Characteristics

Limitations of the current attempts to-
wards realizing CoClouds

On-demand self-
service

• Limited provisioning of computing capabilities
where no global resource discovery or monitoring
is available.

Broad network
access

• Limited capabilities are only available over a local
network. However, computing capabilities are not
globally available and cannot used by heterogene-
ous platforms (e.g., mobile phones, tablets, lap-
tops, and workstations).

Resource pooling • Execution is limited to distributed applications
built to execute on the targeted static platform.

• Resource sharing profile is limited, where re-
sources were shared among tasks built to execute
on it.

• No virtualization layer and no isolation between
the physical resource, the data, and the task logic.

• Coarse grain sharing and task execution.
• Static task assignment, where no tailoring to the

task size to match the resources.
Rapid elasticity • Provisioning of limited resource pool while giving

the illusion of infinite resource availability.
• Limited failure resilience leads to unreliable ex-

ecution.
Measured service • Limited task mobility leads to limited load balanc-

ing.
• Poor resource utilization.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 8, Issue 2, February-2017 553
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

3 COCLOUD OVERVIEW
Figures 1 through6 depict the concept and overall design of
CoCloud. CoCloud achieves the five essential characteristics
listed by NIST and provides the main service models (PaaS,
IaaS, and SaaS).

 Fig. 1. CoCloud Concept.

The GRPS provides both the broad network access and the
measured service characteristics of a cloud model. To achieve
these characteristics, GRPS adopts a novel spatiotemporal ca-
lendaring mechanism with real-time synchronization to pro-
vide a dynamic real-time scheduling and tracking of idle, mo-
bile and stationary, resources. In addition, the GRPS provides
a hierarchical zone architecture with a synchronization proto-
col between different levels of zones to provide the broad
network access characteristic and to enable resource-infinite
computing.
Both the on-demand self-service and the resource pooling cha-
racteristics are provided by CARMS, which maps applications'
requirements to the currently or potentially available mobile
resources. This would support formed cloud stability in a dy-
namic resource environment.
On the other hand, the rapid elasticity characteristic is pro-
vided by our trustworthy dynamic virtualization and task
management layer, which isolates the hardware concern from
the task management. Such isolation empowered CoCloud to
support autonomous task deployment/execution, dynamic
adaptive resource allocation, seamless task migration and au-
tomated failure recovery for services running in a continuous-
ly changing unstable operational environment. CoCloud plat-
form enhances service resilience against failures via multi-
mode recovery and real-time, context and situation-aware ad-
justment of shuffling and recovery policies.
Our Virtualization and task Management Layer (VML) is an
adapted version of CyberX proposed in [27] [28], which is a
biologically inspired Cell Oriented Architecture (COA) [27]
based platform with active components, termed Cells. Cells
support development, deployment, execution, maintenance,
and evolution of software. Also, Cells separate logic, state and
physical resource management. Cells are realized in the form
of intelligent capsules or micro virtual machines that encapsu-

lates executable application-partitions defined as code va-
riants. Applications can be defined in one or more Cell-
encapsulated variants. Generic Cells are generated by the host
middleware termed COA-Cell-DNA (CCDNA). The virtuali-
zation and task management layer dynamically composes
such Cells into larger forms representing the full application.
Such construction facilitates hiding the heterogeneity of the
underlying hardware resources from the application concern
enabling seamless deployment, distribution, and migration of
application on the cloud mobile nodes.
CoCloud has a portable access application namely, iCloud
App interface, which achieves the broad network access cha-
racteristic to provide seamless access to and provisioning of
resources.
CoCloud comprises two primary types of nodes, as shown in
Fig. 2: a fixed control node, and a mobile compute node. Each
type of node has an agent running on it, where we propose a
hierarchical model based on the concept of an agent as the
fundamental building block of our management platform.
There are two types of agents: a Cloud Agent (CA), which
runs on a fixed control node, and a Tenant Agent (TA), which
runs on a mobile compute node. The TA manages the partici-
pant’s local spatiotemporal resource calendar. It connects with
all other agents involved in the cloud formations, and syn-
chronizes the calendar’s content with the global spatiotempor-
al resource calendar on a CA. A CA, as a requester to form a
cloud, manages the formed cloud by keeping track of all the
resources joining its cloud. The CA is deployed on a high ca-
pability node to manage and store the data related to spati-
otemporal calendars for all participants within a cloud.

Figure 2. CoCloud Abstract Overview.
Our CoCloud management platform handles all the tasks re-
lated to both the Resource Domain concerned with the
otemporal resource allocation, and the Task Domain con-
cerned with the task deployment, migration, revocation, etc. as
shown in Fig. 3. The next sections provide more details about
the two domains.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 8, Issue 2, February-2017 554
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

Figure 3. CoCloud Management of Mobile Cloud Computing.

Cloud Reference Model
The left part of Fig. 4 shows the architecture framework of a
fixed computing cloud [29], which is proposed by the Cloud
Security Alliance. At the two bottom layers, the physical facili-
ty and the computing hardware form the most basic compu-
ting unit. Since a cloud service provider pools together a vast
amount of computation resources that may use different
hardware, the computation ability of a set of hardware should
be able to be abstracted and each set of hardware must be able
to communicate with other’s hardware. The facility, hardware,
abstraction, and connectivity together form a computing grid
that supports any additional service provided by a computing
cloud. To enable a client or another cloud to manage and inte-
ract with a set of hardware, an API is implemented above the
connectivity and abstraction layers. The computing grid to-
gether with the API can provide IaaS. A cloud computing ser-
vice provider can also implement middleware capabilities on
which clients can develop software. The infrastructure togeth-
er with the middleware resembles a platform on which com-
mon programming languages and tools can be supported; that
is, a cloud provider provides PaaS by overtaking the man-
agement task of the infrastructure in the middleware. The
cloud provider can then further provide tailored software,
content, and their presentation based on the provided plat-
form. This delivery of “the entire user experience” is known as
providing SaaS.

Ontology
It is important to note that commercial cloud providers may
not neatly fit into the layered service models. Nevertheless, the
reference model is important for relating real-world services to
an architectural framework and understanding the resources
and services requiring security analysis. Our CoCloud plat-

form includes the different main types of X service offerings,
as shown in Fig. 4, SaaS, PaaS, andIaaS. In this subsection, we
present a simple analogy between CoCloud model and the
conventional cloud reference model as follows.

• Realizing IaaS, which includes the entire infrastruc-
ture resource stack, on CoCloud is a complicated task as the
entire management platform and hypervisor layer should be
working through the virtualization and task management
layer. The only piece of software that will be statically availa-
ble on the host is the CCDNA. The hypervisor layer will be
operating above the CCDNA where its entire set of services
fractionalized and encapsulated in Cells. This model suits the
mobile and resource constrained and fractionalized nature of
CoCloud resources. We can represent it from a different
perspective if we used a complicated version of the Cell built
to provision all the features of the regular hypervisor. How-
ever, such Cell will not have many of the useful features that
the fine-grained Cell had such as, low cost of failure, fast re-
covery, and resource efficient execution. Additionally, this
representation will limit the number of hosts that can coope-
rate with CoCloud to those hosts with massive computation-
al power. Ultimately, IaaS should provide a set of APIs,
which allow management and other forms of interaction with
the infrastructure by consumers with our model these API
will be encapsulated as Cells too.

• CoCloud provides the PaaS model by virtualizing
application development frameworks, middleware capabili-
ties, and functions such as database, messaging, and queuing,
and encapsulating it in Cells of the virtualization and task
management layer. The CCDNA will be hosting such services
or part of these services, while the virtualization and task
management layer will seamlessly consolidate these parts
emulating the natural behavior of these services similar to the
conventional model.

• We presented the SaaS model in details, as this is the
simplest model to build in our case given that the services
will be built to suit service-execution model of our virtualiza-
tion and task management layer. The CCDNA represents a
static middleware installed on all the hosts facilitating Cell
execution, and the software services are encapsulated as a
number of Cells operating above it. All the operation man-
agement, Cell deployment, revocation, failure recovery, and
other management tasks will be autonomously handled by
the CoCloud cloud management platform, the virtualization
and task management layer, with no involvement from the
user or the cloud operator.

In this paper, we only focus on the SaaS model as tasks are
uniform where it is much easier to represent. We build tasks
as partitions that are deployed on ready cells, where users
interact with the application not the infrastructure.

4 CLOUD RESOURCE MANAGEMENT

4.1 Resource Management at Compute Node
Fig. 5 depicts the building blocks of a Compute Node. Re-
source management components of the compute node are de-
tailed as follows.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 8, Issue 2, February-2017 555
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

Figure 4. Providing service models by using PlanetCloud

The iCloud interface: It is an interface between the agent and a
user/ administrator, or other systems, e.g., social networks
and other database systems. A user/ administrator uses the
iCloud interface to manage all data in the spatiotemporal re-
source calendar. In addition, the interface enables defining the
settings required for a formed cloud.
The knowledge unit: It consists of two subunits, a local spati-
otemporal resource calendar, which includes spatial and tem-
poral information about the available resources, and informa-
tion bases, that contains predefined or on the fly policies
created by a cloud admin. Also, information bases contain
information about the formed cloud, e.g., Service Level
Agreement (SLA), types of resources needed, amount of each
resource type needed, and billing plan for the service, etc.
Participant Resource Calendaring Service (PRCS): PRCS in-
cludes a Participant Calendar Manager (PCM) which acts as a
service controller for managing the records of the local spati-
otemporal resource calendar. PCM interacts with the synchro-
nizer to synchronize the spatiotemporal resource calendar
with other GRCSs. Also, PCM automatically monitors the in-
ternal state of the participant’s resources. On the other hand,
PRCS provides the trust management services with the re-
quired data to perform trust and security operations.
The Input/Output (I/O) unit: It provides the required commu-
nications for different activities such as cloud formation re-
quests and responses.
The lowest layer, of the TA's building blocks, consists of the
application, networking, and computing resources, which are
involved in the delivery of the service.

4.2 Resource Management at Control Node
The main building blocks of a Control Node are shown in Fig.
6. The functionalities of their resource management are de-
scribed below.
The knowledge unit: A CA has a global spatiotemporal re-
source calendar which includes spatial and temporal informa-
tion, resource profiles, and event calendars of the all available
resources of a cloud’s participants. Therefore, the CA main-
tains the overall picture of the resource capability within the
cloud. The CA uses a global task repository to store the all

tasks within a cloud.
Group Resource Calendaring Service (GRCS): Distributed
GRCSs operate on the updated data from participants’ calen-
dars. These updated data are stored in a group spatiotemporal
resource calendar. GRCS and PRCS are the two primary types
of services forming a global resource positioning system
(GRPS) [10], for dynamic real-time resource harvesting, sche-
duling, tracking and forecasting. GRCS comprises four types
of modules:The Group Calendar Manager (GCM) module, the
Synchronizer, the Prediction Service (PS), and the Trust Man-
agement Services.

Figure 5. Compute Node Building Blocks.

 Figure 6. Control Node Building Blocks.
GCM acts as a service controller for managing records of

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 8, Issue 2, February-2017 556
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

group spatiotemporal resource calendars. In addition, a calen-
dar manager feeds the PS with the required data to perform
resource forecasting. The following subsection will discuss
the construction and operation of PS.
The Prediction Service (PS) Module: The PS module employs
probabilistic models and artificial intelligence algorithms for
forecasting accurately resources clarifying the time they will
be available and their expected locations. In addition, the PS
learns and maintains rules that aid it in classifying the beha-
vior of resources at the various cloud participants. According-
ly, this will help in having the capability of right resource as-
signment and achieving reliable collaborative cloud compu-
ting
As discussed before, each cloud participant has characteristic
data or data attributes that are stored locally and globally at
CAs to define a set of features associated to participants. These
features can be learnt according to the values of participants’
attributes, such as available resources, speed, and location.
Those features might be time-based ones and can be expressed
as a function of time. The mobility feature of a participant
which depends on its speed is an example of these time-based
features. Also, some features are time independent, such as the
participant’s RAM and number of processing cores.
Learning participants’ features by PS will aid in knowing the
available resources at participant and estimating the behavior
of each cloud participant with respect to those resources. For
example, the PS can learn that high speed participants cannot
offer long-term data storage. Consequently, the availability of
heterogeneous participants’ resources can be determined ef-
fectively at each participant.
For efficient resource forecasting, the PS operation is executed
every reasoning window size, in time units, which is set by the
GCM. The window size value is dynamic and altered by the
GCM according to the frequency of received resources’ data
updates and the size of modified participants’ attributes at the
CA. The more recent changes in participants’ attributes are
received at the CA, the more likely to have changes in the re-
source forecasting plan. Through each window size, the PS
performs the following phases:
The PS learns the more relevant set of attributes of each partic-
ipant via employing association rule learning (ARL) algorithm
[30] [29]. In this phase, the PS investigates the more frequent
attributes per each participant where these attributes will refer
to the offered resources, characteristics of this participant,
such as mobility and so on. As an example, the ARL algorithm
might learn the following attributes for a participant: proces-
sor, cores, speed, storage, RAM, and operating system.
Then, the PS can classify the learnt attributes of all partici-
pants using probabilistic decision models that are built using
Fuzzy-based weighted binary decision trees [31]. The proba-
bilistic decision models adopt Fuzzy classifiers, which names
the possible output classes using defined Fuzzy membership
functions (FMFs). Those FMFs describe the classification thre-
sholds on which each attribute will be classified to a specific
class out of a set of output classes. For each registered partici-
pant’s resource, we will able to recognize the main classified
attributes, called features, related to that resource. Then, En-
tropy-based binary decision trees are used by PS to select the

more likely detected feature class at each tree level, or re-
source attribute, and to form a typical sequence of relevant
weighted features related to the studied cloud participant’s
resource. For each feature, we have two possible output
classes. The binary information entropy H_2 (F)about a feature
F class is defined in (1).

Where is the probability of classifying the feature in the

first class; and is for the other class.

The constructed decision models are dynamic that the used
classifiers of embedded weighted binary decision trees are
trained based on the stored data at the knowledge units of
CAs through a reasoning window. Also, the decision models
depend on the set of discovered features per participant’s re-
source in the cloud. Also, the models have categories which
are formed according to the resource type and can be applied
to every participant which possesses the same resource type.
Each feature is considered as a binary random variable (RV)
that it can take two values (e.g., numerical, string, etc.). The
feature is considered as an independent RV with respect to
other features, or RVs. The decision tree per resource consists
of parent features and child features at various levels.

For instance, if we have a mobile resource at a cloud
participant with ID equals 10 that this resource has the
speed attribute which is registered in the knowledge unit
through a reasoning window of length 24 hours. According
to the defined FMF, the speed attribute might be classified
to high speed or low speed features. The registered data
show that resource has 87% of its records with high speed
and 13% of records with low speed. This means that 87% of
the time all over the day, the participant’s resource is with
high speed. So, the uncertainty about this information (i.e.,
classifying the resource feature as high speed) can be calcu-
lated by the entropy for is approximately 0.56. Since

, the more value, the more uncertainty
we will have about the discovered information. So, as

 nears zero, the learnt feature is of high certainty. So,
if and , then the feature will classified to
class c.

At the final decision tree level, we will reach the more
likely features’ sequence that can exist for the related stu-
died resource. The total information entropy concerning
sequence of independent features of a resource will be the
summation of all binary entropy of each individual feature.
Equation (2) shows the entropy of resource’s independent
feature sequence of length n.

(2)

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 8, Issue 2, February-2017 557
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

Figure 7. The main operations of PS.

Figure 8. Fuzzy-based weighted binary decision tree for
classifying computing resource.

From (2), we can estimate the upper bound for

 which will be which equals
where . We set a limit for learning and stor-
ing rules related to studied resources and their related
features that the PS will keep the learnt feature sequence
as a rule if . Actually, we will have
undoubtedly true classification and defined rule if

- The PS adopts trained hidden Markov models [32]

to estimate the behavior of participants’ resources ac-
cording to the input typical sequence of features, or input
states, learnt from the previous phase. The estimation
process for outputs relies on continuous input sequence
with different Gaussian distributions. HMM is trained
using unsupervised learning algorithm called Baum-
Welch algorithm. Then, HMM performs distribution mix-
ture for obtaining the most likelihood output sequence.
From the most likelihood output sequence, the PS can
generate a set of rules that define the behavior of re-
sources at all participants taking into consideration the
condition that }.

The HMM is defined with the following parameters (π ,

A, B) which are:
• Initial state probability π vector: this defines the initial

probability of each classified feature to be the first input fea-
ture in the input sequence to the HMM.
• State transition probabilities A matrix: the matrix

maintains Aij elements where each element defines the tran-
sition probability form classified feature i to another feature
j.
• The observation probability B matrix: this matrix re-

lates each input feature in an input sequence with a possible
output through a defined probability.

Fig. 7 illustrates the design and operation of the PS show-
ing its main building blocks, which employ the algorithms
discussed before. The figure shows that PS learns behavior
and rules related to three different resource types located at a
cloud participant based on its maintained data at the know-
ledge units at the cloud.

The following subsection will discuss an example which
clarifies the operation of PS.

Example

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 8, Issue 2, February-2017 558
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

Fig. 8 shows the classified features for a computing server
at a cloud participant based on using the Fuzzy-based
weighted binary decision tree model.

Calculating the total entropy of feature sequence of length
4, , according to (2) results in a value of 2.573
where

Then, this feature sequence is input to a trained HMM that
it has two main output resource behaviors which are “reliable
resource” and “unreliable resource”. According to the defined
B matrix, all the four classified features have higher probabili-
ty related to the first behavior than the one related to second
behavior. Here is an example of the B matrix that B: {{0.8, 0.2},
{0.7, 0.3}, {0.65, 0.35}, {0.9, 0.1}} where it consists of four rows r
(i.e., number of features) and two columns c (i.e., number of
behavior classes)

Since, the total entropy < n/2 (i.e., 2), then the
PS will not set a rule for this participant that his server is a
reliable one. We can remark here that although the HMM out-
put a classified behavior for the feature sequence, the PS does
not accept this output as a rule because it finds to some extent
high uncertainty about this information.

Collaborative Autonomic Resource Management System
(CARMS): We design our CARMS architecture using the key
features, concepts and principles of autonomic computing
systems to automatically manage resource allocation and task
scheduling to affect cloud computing in a dynamic mobile
environment.

Cloud Manager (CM): It provides a self-controlled operation to
automatically take appropriate actions according to the results
of the evaluation received from the Performance Analyzer,
described below. The CM manages interactions to form, main-
tain and disassemble a cloud. A CM comprises four compo-
nents, a Service Manager (SM), a Resource Manager (RM), a
Policy Manager (PoM), and a Participant Manager (PrM). A
SM stores the request and its identifier. The SM maps the res-
ponses received from the participants with the service re-
quests from users, and the result is sent back directly to the
user. The CM decomposes the requested service, upon receiv-
ing a cloud formation request, to a set of tasks. Tasks of a re-
quested service need to be allocated to mobile resources. The
RM handles the resource allocation on mobile nodes using its
Resource Allocator component. Also, the Resource Allocator
obtains the required information about the available resources
by interacting with a GRCS. The Resource Allocator interacts
with the registry of CA to store and retrieve the periodically
updated data related to all participants within a cloud. The
CM interacts with CyberX servers to assign a set of virtual
resources in cells to these tasks according to the received SLA
information from the CM. The PoM prevents conflicts and
inconsistency when policies are updated due to changes in the

demands of a cloud. The PrM manages the interaction be-
tween a cloud requester and resource providers, the cloud
participants, to perform a SLA negotiation.
Monitoring Manager: It includes a Performance Monitor unit
which monitors the performance measured by monitoring
agents. Then, it provides the results of these measurements to
the Performance Analyzer component. The workload informa-
tion about the incoming request is periodically collected by the
Workload Monitor component.
Performance Analyzer: It continually analyzes the measure-
ments received from the Monitoring Manager to detect the
status of tasks and operations, and evaluate both the perfor-
mance and SLA. The results are then sent to both the Cloud
Manager and the Account Manager.
Account Manager: In case of violation of SLA, adjustments are
needed to the bill of a particular participant. These adjust-
ments are performed by the Account Manager component
depending on the billing policies negotiated by the requester
of cloud formation.

5 CLOUDVIRTUALIZATION AND TASK MANAGEMENT
CoCloud uses the trustworthy dynamic virtualization and task
management layer to manage the cloud tasks and the running
applications on the cloud. This layer virtualizes the cloud re-
sources creating a suitable execution environment for the ap-
plications.
The Virtualization and task Management Layer (VML) uses
the COA [27] features to enable applications to dynamically
adapt to runtime changes in their execution environment.
Such feature enables the virtualization and task management
layer to tolerate high frequency task preemption and migra-
tion that might be induced by failures as a consequence of un-
expected resource mobility or power failure. Due to the nature
of our resources the high level of heterogeneity is a major con-
cern for task deployment and migration. Using such vitaliza-
tion architecture adequately resolves this issue.
Figure 9 shows the virtualization and task encapsulation
process in CyberX based virtualization management.

Figure 9. The CyberX based virtulization manament
VML enables the application to exchange real-time status and
recommendation messages with the host Cell for administra-
tive purposes to enhance the Cell local application awareness
and to enable application driven adaptation. The virtualiza-
tion and task management layer uses these messages to guide
the Cell runtime quality-attribute manipulation towards accu-

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 8, Issue 2, February-2017 559
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

rate and prompt adaptation. Further, the virtualization and
task management layer collects, analyzes and trustworthy-
share these messages and status reports, constructing a real-
time sharable global view of the Cell network.
VML enhances the system resilience by multiple recovery
modes to cover different application-requirements and host-
configurations. The virtualization and task management layer
offers a prompt and accurate fine-grained recovery, hot-
recovery, for resourceful hosts executing critical applications,
and a more resource efficient course-grained recovery, cold-
recovery, for less critical applications. In hot-recovery, the Cell
can have one or more fully-alive replicas on different mobile
nodes which can do achieve virtually no task failure down-
time but on the account of increasing resource usage. The
cold-recovery might save some of the resources used by repli-
cas, by deploying a replacement of the failed Cell, while com-
promising some of the execution states, and increasing the
failure downtime. The virtualization and task management
layer uses the COA loosely coupled features to allow applica-
tions to seamlessly change their current active recovery modes
based on context, environment, or application-objective
change.
VML layer is composed of a set of central powerful nodes or
servers. These servers collaborate autonomously to manage
the whole network of Cells. This platform is responsible for
the organism creation “composition and deployment of Cells”,
management, the host side API(s) “CCDNA”, real-time moni-
toring and evaluation of the executing Cells, and recovery
management. Further, it provides the necessary management
tools for system administrators to manage, analyze, and eva-
luate the working Cells/organisms. Figure 10 shows the VML
architecture. The next subsections will briefly describe the
main components. More detailed description can be found at
[26]

Figure 10. Virtualization management architecture

Cloud Management at Control Node
All related cloud management tasksare performed on fixed
powerful control nodes. The following describes the main

functionality of the main components running on such nodes:
Auditing and Reputation Management Server (ARMS):Its
main task is to monitor outgoing or incoming Cell administra-
tive messages for the lifetime of the Cell. This information is
used to assist evaluating the trustworthiness of the Cell. This
server cooperates with the recovery tracking servers and
routing nodes to frequently evaluate the Cell behavior for any
malicious activities. This server will hold comprehensive re-
ports about each Cell for the lifetime of the Cell. A trust feed-
back will be generated from ARMS and send to the Trust
Management Services which helps in the evaluation of the
trustworthiness of a participant.
Recovery and Checkpoint Tracking Server (RCTS):This moni-
tors, and stores checkpoints changes for all running Cells.
Checkpoint updates are always enclosed as a part of the Cell
frequent beacon message updates. RCTS is also responsible for
reporting failure events by comparing the duration between
consecutive beacon messages to a certain threshold matching
the reporting frequency settings of each Cell. Failure events
are validated by comparing the recently noticed reporting-
delay for a particular Cell to the average reporting-delay with-
in its neighbors and other Cells hosted on the same host. A
Cell failure notice is reported to the global management serv-
ers with the last known failure recovery settings, checkpoint,
and variant settings to start deploying replacement Cells.
Global Management Server (GMS):The main task of this serv-
er is to manage the underlying COA infrastructure. GMS is
responsible for Cell deployment, coordinating between serv-
ers, facilitating and providing a platform for administrative
control. GMS is the only server authorized of issuing Cell ter-
mination signals. It can also force Cell migration or change the
current active recovery policy when needed. GMS is responsi-
ble for assigning the infrastructure global policy, routing pro-
tocol, auditing granularity, registering/revoking new hosts,
and keeping/adjusting the host-platform configuration file.
The Data-Warehouse Server (DWS):It is the main components
of the infrastructure that participates in the separation be-
tween the Data, Logic, and Physical-resources. DWSs are dis-
tributed through the Cell network, they are responsible for
holding and maintaining all the data being processed, and any
other sensitive data that the management units want to store.
All running Cells are not permitted to store sensitive data on
their local memory. All sensitive data has to be remotely stored
in a specific DWS through the dedicated data channel. DWSs
synchronizes their data independently.
Distributed Naming Server (DNS):It is responsible for resolv-
ing the real host IP/Port mapping to the virtual Cell Id and
organism names. The working Cells use this mapping at run-
time to direct incoming and outgoing communications. DNS is
a major player in the COA’s separation of concerns that
enables virtually seamless, Cell relocation, and workload tran-
sition in case of failure recovery. In case of Cell movement, the
DNS will be instructed by the GMS to maintain communica-
tion redirection.

Cloud Management at Compute Node
GMS uses the resource-forecasting database to allocate re-
sources for the Cells, of the virtualization and task manage-

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 8, Issue 2, February-2017 560
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

ment layer, to be deployed on the Compute Node. The SM
updates the task repository by the tasks that should be ex-
ecuted, and the code variants associated with it. The GMS en-
capsulates these variants into one of its Cells forming a suita-
ble container that matches one of the available resources. The
selected resource will be the target of the Cell deployment
where the CCDNA is installed. That resource shall accept the
deployment package from the GMS, instantiate and execute
the Cell.
In case of failure, or unavailability, the GMS will relocate the
Cells into new active resource seamlessly. All the concerns that
might be involved with the task relocation will be autono-
mously and seamlessly handled by the virtualization and task
management layer. The details of task relocation, recovery in
case of failure or performance tuning using diversity employ-
ment, which has been addressed in [27], is omitted from this
paper due to space limitation.

6 EVALUATION

6.1 Working Scenario
For evaluation purposes, we present a scenario of dynamic
resources in different-sized hospital models with 25, 50, 75,
and 100 beds, respectively. The model involves different types
of mobile devices such as Smartphones and Laptop Comput-
ers and semi-stationary devices such as on-board computing
resources of vehicles in a long-term parking lot at a hospital.
Such rather large pool of idle computing resources can serve
as the basis of a CoCloud as a networked computing center.
We start our evaluation by predicting the average number of
participants in this scenario at hospitals of different sizes,
which reflects the amount of computing resources that might
participate in a CoCloud. Then, we perform evaluations, using
the obtained average number of participants, to study the ef-
fects associated with the performance of the formed CoCloud.

6.2 Expected Number of Participants in a Resource Pool

Patients arrive at a time dependent rate λT(t), independent
of the number of participants already participating in the re-
source pool at the hospital. The departure rate of participants
is µT(t). Further, we assume that for all t≥0, λT(t) and µT(t) are
bounded by the constants M1, m1 , M2, m2, where (0< m1; 0<
m2) such that

m1 ≤ λT(t) ≤ M1; m2 ≤ µT(t) ≤ M2 (3)

Consider the event {N(t) = k} occurs if the resource pool at
the hospital contains k patients at time t, where (1≤ k ≤ N). The
probability that the event {N(t) = k} occurs is Pk(t).

Pk(t) = Pr [{N(t) = k }] (4)

We consider the general case where λT(t) and µT(t) are in-
tegrable functions as in [26]. So that if the expected number,
E[NT(t)], of patients in the hospital at time t converges, the
limiting behavior of E[NT(t)] as t →∞ can be written as

Limt→∞E[NT(t)] = Limt→∞ (λT(t)/µT(t)) (5)

Where,

 (6)

Where n0 is the number of patients in the hospital at t=0.
The success probability, p(t) , is given by

 (7)

Patients arrival, λT(t), and departure, µT(t), rates into/from
the hospital are periodic functions of time, and can be ob-
tained as following:

λT(t) = a + b sin θ (t) (8)

µT(t) = c + d sin θ (t) (9)

Where a, b, c, and d are constants.

We can use the previous equations to get the expected
number of cars, E[Nc(t)], in the parking lot at time t, where a
relationship do exist between traffic and the number of arriv-
ing/departing patients. Therefore, we can model the expected
number of cars as a percentage factor, v, using the following
cars arrival, λC (t), and departure, µC (t), rates

(t) = v* (t) (10)

µC(t) = x+ y sin θ (t) (11)

Similarly, we can calculate E[Nc(t)] and we set the number
of patients’ cars in the hospital at t=0 to be equal v*n0. The
limiting behavior of E[Nc (t)] as t →∞ can be written as

Limt→∞E[Nc (t)] = Limt→∞ (λC(t)/µC(t)) (12)

Let E[Nm(t)] be the expected number of patients’ mobile
nodes, in the hospital at time t, where each patient holds a
mobile node. This allows us to write

E[Nm(t)] =E[NT(t)] (13)

In addition, we consider the resources of the hospital’s
employees as valuable participants to the formed cloud. Such
resources may include computational power of the employees’
mobile devices as well as on-board computing resources of
employees’ cars in the employee parking lots at the hospital.
We set the expected number of employees, E[Ne(t)], to be

E[Ne(t)] = Emin (14)

Where, Emin is the minimum number of employees that
should be located in the hospital in their regularly scheduled
shifts.

Similarly, we set the expected number of employee cars,
E[Nec(t)], as a percentage factor, f, of the number of em-
ployees. We can write

E[Nec(t)] = f*E[Ne(t)] (15)

The total expected number of participants, E[Np (t)], in the
hospitalcan be obtained by

E[Np (t)] = E[Nc(t)] + E[Nm(t)] + E[Nec(t)] +E[Ne(t)] (16)

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 8, Issue 2, February-2017 561
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

Using the previously obtained expected number of partici-
pants, we can get the total number of available cells hosted by
participants in a total resource pool.

Using the previous equations, we set the simulation time to
60 hours. We assumed that at t = 0, n0 equals35, 60, 85, 100
patients, respectively, according to the size of the hospital.
Similarly, we set the number of full-time staff employed, Emin,

equals 35, 61, 94, 116 employees, respectively, according to the
size of the hospital [33]. We set θ(t) to be πt/12 for a time unit
equals one hour. Also, we use a quasi-periodic time-
dependent arrival and departure rates as follows.

At hospital size equals 25 beds,

λT(t) = 32+16[1+2exp(-0.2t)] sin (πt/12) (17)

λC(t) = 0.3* (32+16[1+2exp(-0.2t)] sin (πt/12)) (18)

At hospital size equals 50 beds,

λT(t) = 72+36[1+2exp(-0.2t)] sin (πt/12) (19)

λC(t) = 0.3* (72+36[1+2exp(-0.2t)] sin (πt/12)) (20)

At hospital size equals 75 beds,

λT(t) = 112+56[1+2exp(-0.2t)] sin (πt/12) (21)

λC(t) = 0.3* (112+56[1+2exp(-0.2t)] sin (πt/12)) (22)

At hospital size equals 100 beds,

λT(t) = 152+76[1+2exp(-0.2t)] sin (πt/12) (23)

λC(t) = 0.3* (152+76[1+2exp(-0.2t)] sin (πt/12)) (24)

Where, at each hospital size

µT(t) = 2+ [1+ exp(-0.2t)] sin (πt/12) (25)

µC(t) = 2+ [1+ exp(-0.2t)] sin (πt/12) (26)

We computed the expected number of mobile nodes at
time t as shown in Fig. 11 shows E[Np(t)]. The expected num-
ber of mobile nodes, at each hospital size, dropped as illu-
strated in Fig. 7and settles down to a constant value at 51, 97,
150, and 192, respectively, after t > 20 hours of simulation. The
pattern of the unstable fluctuation, before stabilization, de-
pends on the probability of the departure of initially partici-
pating nodes and the exponential component of arrival and
departure rates.

Figure 11. The expected number of mobile

nodes versus time.

Similarly, Fig. 12 shows that evaluating the expected num-
ber of cars in the parking lot of the hospital stabilizes to a con-
stant number, at each hospital size, e.g. at 19, 36, 55, and 70,
respectively, after 20 hours.

Next, we turned our attention to compute the expected
number of participants in the hospital versus time. Fig. 13
shows E[Np (t)] plotted against time. The expected number of
participants dropped as illustrated in Fig. 9. E[Np(t)] stabilizes
at 70, 133, 205, and 262, at each size of a hospital, respectively,
after t > 20 hours of simulation.

Figure 12. The expected number of cars versus time.

Figure 13. The expected number of participants versus time.

6.3 Simulation Platform
We choose the CloudSim toolkit [34] [35] to be our simula-

tion platform, as it is a modern simulation framework aimed
at Cloud computing environments. To simulate the CoCloud
environment in hospital, we have extended CloudSim to sup-
port node mobility by incorporating the Random Waypoint
(RWP) model, where a mobile node moves along a line from
one waypoint } to the next . These waypoints are un-
iformly distributed over a unit square area. At the start of each
leg, a random velocity is drawn from a uniform velocity dis-
tribution.

We designed Java classes for implementing the spatiotem-
poral data related to resources and their future availability

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 8, Issue 2, February-2017 562
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

which is obtained from the calendaring mechanism. In addi-
tion, we edited the CloudSim to implement our proposed P-
ALSALAM algorithm.

In our evaluation model, an application is a set of tasks
with one primary task executed on a primary node. Each task
runs in a single VM which is deployed on a participant node.
VMs on participating nodes could only communicate with the
VM of the primary task node and only when a direct ad-hoc
connection is established between them.

Assumptions
The following assumptions are used in all simulation eval-

uations.

• Communication between nodes is possible within a li-
mited maximum communication range, x (km). Within
this range, the communication is assumed to be error
free and instantaneous.

• For scheduling any application on a VM, First-Come,
First-Served (FCFS) is followed.

• For calculating the collision delay, we consider the
worst case scenario, a saturation condition, where each
node has a packet to transmit in the transmission range.

• For simplicity, a primary node collects the execution re-
sults from the other tasks which are executed on other
participating nodes in a cloud.

• A SaaS model is only considered in our model.

6.4 Simulation Evaluation
We start our evaluation by studying the effects associated

with execution of applications in a CoCloud, consists of sta-
tionary and mobile devices, using different scheduling algo-
rithms, .i.e., Proactive Adaptive List-based Scheduling and
Allocation AlgorithM (P-ALSALAM) [8], which determines
the best participants based on the availability of its resources
to participate in a cloud and the random reliability-based al-
gorithm, which does not use this information, where nearby
mobile nodes with random availability are selected to execute
the submitted application.

Participant nodes are characterized by the number of
processing cores, CPU performance in terms of Millions In-
structions Per Second (MIPS), amount of RAM, storage and
network bandwidth.

In our evaluation model, each task has a pre-assigned in-
struction length and runs in a Cell. A Cell matches the smallest
computational power available in any participants, which is
simulated as a single virtual machine (VM) deployed on a par-
ticipant. A VM can be migrated out from the participating
node as the node becomes unreliable to execute a task. Migra-
tions happen when communications are established among
participating nodes.

We modify the simulation to include spatiotemporal data,
future availability, obtained from the calendaring mechanism.
Also, we consider that participating nodes cannot always
function well all the time and may fail. In our evaluation, we
only consider the cold-recovery mode in case of node failure.
We set the number of inactive nodes to be sampled following
a Poisson Process during a time t.

Metrics and Parameters
We use several metrics to evaluate the performance of our

PlanetCloud and its subsystems as follows.

1. The average application execution time, which is the
time elapsed from the application submission to the applica-
tion completion.

2. The mean number of VM migrations, which is the
number of VM migrations during the simulation time.

We set parameters in the simulation according to the max-
imum and minimum values shown in Table 2.

TABLE 2
PARAMETERS

Parameters Values Parameters Values
Average Mobile

Node Speed
(Uniform dis-

tribution)

1.389
(m/sec)

Number of
tasks/Application

10 - 70

Communication
range

0.1-1
(km)

Inactive Node
rate

 (Poisson
Process)

1/45 -1/15
(Node/Sec)

Simulation Setup
We consider a CoCloud, where a CoCloud at each size of a

hospital is composed of previously obtained stabilized num-
ber of mobile nodes, in Fig. 7, and stabilized number of semi-
stationary cars, in Fig. 8, with heterogeneous characteristics:
512 or 1024 MB RAM, 4 GB Storage, and 54 MB bandwidth.
Each node may have one or two cores with processing capabil-
ities of 2000 or 7500 (MIPS), respectively. However, we set all
cars to have the highest computing configurations. In our
evaluations, we create VMs each has one processing core with
processing capability 1256 MIPS and 512 MB RAM.

Results of our evaluations are collected from different si-
mulation runs and the value of sample mean is signified with
t-distribution for a 95 % confidence interval for the sample
space of 30 values in each run.

In our evaluation, we consider that every car has a fixed
location. We consider that every participating car can always
function well all the time with high reliability and does not
fail. However, we consider that the mobility pattern of mobile
nodes follows a Random Waypoint (RWP) model. Also, each
node has an average speed equals 1.389 (m/sec). We consider
that mobile nodes are different in their reliability, in terms of

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 8, Issue 2, February-2017 563
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

future availability and reputation, which follow the values of
the arrival rate of inactive nodes defined in Table 2.

Results
Connectivity effect at different number of tasks

The average execution time of an application is investi-
gated at different communication ranges of stationary nodes,
cars, ranging from 0.1 to 1 (km) when we consider one appli-
cation is submitted to be executed, with different number of
tasks, ranging from 20 to 70 tasks. We consider a small-sized
hospital (25 beds) with total number of participant equals 70
(19 cars and 51 mobile nodes). Also, we consider that all nodes
are reputable and each mobile node has a transmission range
equals 0.4 km, and its average speed equals 1.389 (m/sec). We
set the task length to be equal to 500000 MI. We perform this
evaluation with an arrival rate of inactive nodes equals 1/45
(nodes/sec). Where, we consider that the effect of reliability of
mobile nodes is neglected at this arrival rate of inactive nodes.

Fig. 14 depicts a comparison between the results of apply-
ing both P-ALSALAM and random reliability-based node se-
lection algorithms in terms of the average execution time of an
application at a small-sized hospital. Results show that P-
ALSALAM significantly outperforms the random reliability-
based node selection algorithm in terms of the average execu-
tion time of an application at all transmission ranges. Similar-
ly, the average number of VM migrations when applying P-
ALSALAM significantly is smaller than the case when apply-
ing the random reliability-based node selection algorithm as
shown in Fig. 15.

Figure 14. Average execution time of an application when applying differ-
ent reliability based algorithms at a small-sized hospital (25 beds).

Figure 15. Average number of VM migrations when applying different
reliability based algorithms at a small-sized hospital (25 beds).

The results of Fig. 16show that the average execution time
of an application has a higher value at a small communication
range, e.g. 0.1 (km). This is because the smaller the communi-
cation range the larger the probability to depend on mobile
nodes, which may fail, as participants in a CoCloud, where the
communication delay is dominant. Consequently, the average
number of migrations of a VM increases at a smaller commu-
nication ranges as shown in Fig. 17. While, a better perfor-
mance is obtained at higher communication ranges, e.g. 1
(km). Results shows that P-ALSALAM always has a better
performance at a small number of submitted tasks.

Figure 16. Average execution time of an application vs. communication
range (km) when applying P-ALSALAM algorithms at a small-sized hos-
pital at different number of submitted tasks.

Figure 17. Average number of VM migrations vs. communication range
(km) when applying P-ALSALAM algorithms at a small-sized hospital at
different number of submitted tasks.

Density effect at different communication ranges of
stationary nodes

We repeat the evaluation of P-ALSALAM algorithm at a
different size of a hospital, i.e., small, medium, large or huge
hospital which represents different node densities when we
consider different communication ranges of stationary nodes,
e.g. 0.2 and 1 (km), respectively. We set the arrival rate of inac-
tive nodes to be 1/45 (Node/Sec). We consider one application
is submitted to be executed, with a number of tasks equals to
70. Fig. 18 shows that a small-sized hospital with low node
density, e.g. 70 (Nodes/Km²), has a high average execution
time of an application. This is because of the average number
of stationary reliable cars, e.g. 19, is small when compared
with a larger number of stationary cars at high density value.
Conversely, a better performance is obtained at a huge-sized
hospital with high node density, e.g. 262 (Nodes/Km²), when
the average number of stationary reliable cars is large, e.g. 70.
This is because the performance is enhanced when our P-

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 8, Issue 2, February-2017 564
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

ALSALAM algorithm can assign the requested tasks to a larg-
er number of reliable resources and less depends on variable
reliability mobile nodes. Similarly, Fig. 19 shows that the
higher the node density the higher dependency on reliable
and connected stationary nodes to execute the submitted
tasks, and therefore the lower probability of VM migrations is
obtained.

Figure 18. Average execution time of an application vs. node density
(nodes/km²) when applying P-ALSALAM algorithms at different-sized hos-
pital models at different stationary nodes’ communication ranges.

Figure 19. Average number of VM migrations vs. node density
(nodes/km²) when applying P-ALSALAM algorithms at different-sized hos-

pital models at different stationary nodes’ communication ranges.

Density effect at different arrival rates of inactive nodes
Similarly, we repeat the evaluation of P-ALSALAM algo-

rithm at a different arrival rate of inactive nodes equals 1/45
and 1/15 (Node/Sec), respectively. Fig. 29, showed that the
average execution time of an application at a large density of
nodes, e.g. 262 (Nodes/Km²) has a better performance than the
case of a small density of node, e.g. 70 (Nodes/Km²), at the
same number of tasks, e.g., 20 tasks and the same arrival rate
of inactive nodes, e.g. 1/45 (Node/Sec). This is because the
larger the density of nodes the more dependency on reliable
stationary nodes. However, the smaller the density of nodes
the more dependency on variable reliability mobile nodes that
could fail, and therefore the performance may degraded due
to the migration delay. Results depict that the effect of node
failure may be neglected at arrival rate of inactive nodes
equals 1/45 (Node/Sec).

Figure 20. Average execution time of an application vs. node density
(nodes/km²) when applying P-ALSALAM algorithms at different-sized hos-
pital models at different arrival rates of inactive nodes.

Reliability Effect
In this evaluation, we evaluated the average execution time

of an application and the mean number of VM migrations at a
small-sized hospital with node density equals 70 (Nodes/Km²)
at a high load of submitted tasks, e.g. 70 tasks. To neglect the
effect of connectivity we consider the communication range of
a stationary node equals 1 (km). Also, we consider that all
nodes are reputable and each mobile node has a transmission
range equals 0.4 km, and its average speed equals 1.389
(m/sec). The average execution time of an application is inves-
tigated at different values of the arrival rate of inactive nodes,
ranging from 1/45 to 1/20 (nodes/sec).

Fig. 21 shows that at a larger value of arrival rate of inac-
tive nodes, e.g. 1/20 (nodes/sec), the worst performance is ob-
tained than in the case of results at a smaller arrival rate of
inactive nodes, e.g. 1/45 (nodes/sec). This is because of the
probability a node could fail is high when compared with a
lower arrival rate of inactive nodes value. Consequently, the
average number of migrations of a VM increases when the
arrival rate of inactive nodes is increased as shown in Fig. 22.

The node failure forces a VM to migrate to another reliable
node. This leads to an extra time overhead of VM migration
which is added to the execution time of an application. These
results showed that our PlanetCloud performs well in terms of
the average execution time of application with a smaller num-
ber of VM migrations even in case when a large number of
mobile nodes have left the CoCloud.

Figure 21. Average execution time of an application at different arrival
rates of inactive nodes at a small-sized hospital (25 beds).

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 8, Issue 2, February-2017 565
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

Figure 22. Average number of VM migrations at different arrival rates of
inactive nodes at a small-sized hospital (25 beds).

Scalability and Management Overhead effect
In this experiment, we consider a CoCloud at three differ-

ent configurations, as depicted in Table III. A distinct VM in-
stance is created for each task; therefore there is no overhead
of VM scheduling for task processing. We set the number of
stationary nodes equals 10 nodes, and all of them have the
highest computing configurations. On the other hand, we con-
sider that each mobile node has a transmission range equals
0.2 km, and its average speed equals 1.389 (m/sec). The per-
formance is investigated at arrival rate of inactive nodes
equals 1/50 (nodes/sec).

We start this evaluation by investigating the performance
of a CoCloud as more nodes, resources, are added to the sys-
tem, ranging from 40 to 100 nodes, when we consider one ap-
plication is submitted to be executed, with a fixed number of
tasks equals 35.

TABLE 3
COCLOUDS WITH DIFFERENT HOST CONFIGURATIONS.

 Values of Resource Configurations

Parameters low Medium High

Number of

CPUs/node
1, 2 2, 2 2, 4

Processing

Capabilities

2000 ,7500

(MIPS)

7500, 14564

(MIPS)

7500, 49160

(MIPS)

RAM
512, 1024

(MB)

1024 , 2048

(MB)

1024 , 4096

(MB)

Storage 4 (GB) 16 (GB) 16 (GB)

Bandwidth 54 (MB) 54 (MB) 54 (MB)

Fig. 23 depicts a comparison between the results of apply-
ing both P-ALSALAM and random reliability-based node se-
lection algorithms in terms of the average execution time of an
application at a CoCloud with low resource configurations.
Results show that P-ALSALAM significantly outperforms the
random reliability-based node selection algorithm at all node
densities. Analysis of the results indicates that average execu-

tion time of an application decreases with the increasing in
number of nodes that could participate in a CoCloud, i.e. more
resources are added to a CoCloud computing pool. This is
because the more resources added to the computing pool of a
CoCloud, the larger the probability to select a new VM place-
ment, another node, where a VM could migrate to. This helps
the migrated VM to get better resource availability and to
scale up its computation. While, noticeable performance de-
gradation in P-ALSALAM results appear at higher node den-
sities, e.g. 100 (Nodes/Km²), due to a great effect of the delay
due to collisions in addition to the transmission delay.

Figure 23. Comparison of application average execution time as more

resources are added to a CoCloud at different reliability based algorithms.

Similarly, the average number of VM migrations when ap-
plying P-ALSALAM is smaller than the case when applying
the random reliability-based node selection algorithm as
shown in Fig. 24.Results show that the higher the node density
the lower probability of VM migrations is obtained. This is
because of the probability a node could fail is high at high
node density, e.g. 40 (Nodes/Km²), at the same arrival rate of
inactive nodes, when compared with a lower node density,
e.g. 100 (Nodes/Km²). Consequently, the average number of
migrations of a VM decreases when the density of nodes is
increased as shown in Fig. 24.

Figure 24. Comparison of Average number of VM migrations as more

resources are added to a CoCloud at different reliability based algorithms.

We repeat the evaluation both P-ALSALAM and random
reliability-based node selection algorithms when we consider
different task load, i.e. the number of submitted tasks, ranging
from 10 to 60 tasks. In this part, we set the density of nodes to
be 70 (Nodes/Km²). Fig. 25 shows noticeable differences be-
tween results of the two cases, with/without using the P-
ALSALAM, appear at a higher number of submitted
tasks/application, e.g. 60 tasks/application. Also, results show
the increasing trend in average execution time of application

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 8, Issue 2, February-2017 566
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

with the increasing in number of submitted tasks, and conse-
quently the number of VMs. This is because a distinct VM in-
stance is created for each task. Consequently, the deployment
and management of each VM requires additional overhead for
application processing which increases the execution time of
an application. In a CoCloud, the time required to migrate a
VM from one node to another constitutes the time overhead of
VM migration. It is clear that more use of VMs makes the ex-
ecution time of application degrades faster. Also, the figure
suggests that relationship between the number of submitted
tasks, their VMs, and the execution time of application is li-
near.

Similarly, the results of the average number of VM migra-
tions when applying P-ALSALAM significantly outperform
the results when applying the random reliability-based node
selection algorithm as shown in Fig. 26. Results show that
more use of VMs the more probability of VMs migrations
could occur.

Figure 25. Comparison of application average execution time of a CoC-
loud with low resource configurations as the number of submitted tasks
increases when applying different reliability based algorithms.

Figure 26. Comparison of Average number of VM migrations of a CoCloud
with low resource configurations as the number of submitted tasks in-
creases when applying different reliability based algorithms.

In the next evaluation, we evaluated P-ALSALAM algo-
rithm at different resource configurations of a CoCloud as
shown in Table III.Fig. 27 depicts a comparison between the
application average execution times, at density of nodes
equals 70 (Nodes/Km²), when we consider different the num-
ber of submitted tasks, ranging from 10 to 60 tasks. Results
show that the higher the computing capabilities of a node par-
ticipating in a cloud, the better performance is obtained. This
is because the higher resource configurations of a participating
node the higher ability of our P-ALSALAM Algorithm to allo-

cate many VMs to a single physical node and to perform effi-
cient VM consolidation. Consequently, the efficient selectivity
of a reliable node, provided by our P-ALSALAM, decreases
the inter node VM migrations and their management over-
heads as depicted in Fig. 28.

Figure 27. Application average execution time comparison for CoClouds
with different resource configurations when applying P-ALSALAM Algo-
rithm.

Figure 28. Average number of VM migrations comparison for CoClouds
with different resource configurations when applying P-ALSALAM Algo-
rithm.

Findings
Our findings can be summarized as follows:

• The performance is affected by the percentage of the
number of stationary nodes within the total density of avail-
able nodes. It means the more stationary reliable nodes, par-
ticipate in a CoCloud, the less dependency on mobile varia-
ble reliability nodes. This could enhance the performance of
the submitted application.

• A better performance may be obtained, even at a
shorter transmission range, if we apply our P-ALSALAM
algorithm. This is because our algorithm frequently resche-
dules the delayed tasks and this minimizes the effect of
communication delay.

• Performance enhancement of a CoCloud is provided
by applying the efficient dynamic VM consolidation. This
could be achieved by selecting reliable and powerful com-
puting nodes to participate in a CoCloud. This enhances
both scalability and management overhead by reducing the
number of inter host VM migrations.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 8, Issue 2, February-2017 567
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

• The performance is affected by the percentage of the
reliable resources that could be added to the computing
pool of a CoCloud. It means the more reliable nodes, partic-
ipate in a CoCloud, the larger the probability to select a new
VM placement, where a VM could migrate to. This leads to
get better resource availability and scalability.

7 CONCLUSION
In this paper, we proposed PlanetCloud, a collaborative

cloud management platform with an intrinsic support for
highly-mobile heterogeneously-composed and configured
clouds. Our construction fulfills the essential characteristics of
the cloud computing model and offers different service mod-
els. Our design liberates cloud computing from being con-
cerned about resource constraints. PlanetCloud is powered by
a cloud management subsystem for resilient cloud operation
on dynamic mobile resources to provide stable cloud in a con-
tinuously changing operational environment. Also, Planet-
Cloud is powered by a resource management subsystem
which enables efficient use of idle mobile resources, by using
collaborative autonomic resource management and providing
a global mobile and stationary resource discovery, forecasting
and monitoring. Additionally, this work presents our vision to
enhance the prediction accuracy of resource availability in-
cluding the descriptions of probabilistic models and artificial
intelligence algorithms that could be implemented.

Analytical and simulation results showed that PlanetCloud
can safely and reliably provide and maintain the needed com-
putational power to form a reliable cloud operating in a dy-
namic, unstable, and heterogeneous resource environment.
Also, results showed the benefits of enabling resource collabo-
ration, provided by PlanetCloud, to achieve better capability
to minimize management overhead. Additionally, results
showed that PlanetCloud can “softly” guarantee reliable re-
source provisioning, transparently maintaining applications’
QoS and preventing service disruption in highly dynamic en-
vironments.

Our ongoing research includes the following.

1) Develop a security mechanism to preserve the privacy
and security constraints of a cloud resource provider, while
allowing multiple users to share its resources and data for
calendaring. There is a need to support distributed data access
and computations without compromising the raw data of
cloud nodes; and

2) Extend our proposed architecture to enhance the
prediction accuracy of resource availability by utilizing
complementary data sources such as from social networking.

REFERENCES
 [1] A. Klein, C. Mannweiler, J. Schneider, and H. D. Schotten, "Access
schemes for mobile cloud computing," in Eleventh International Confe-
rence on Mobile Data Management (MDM), 2010, pp. 387-392.
[2] T. Xing, D. Huang, S. Ata, and D. Medhi, "Mobicloud: A geodistributed

mobile cloud computing platform," in 8th International Conference on
Network and ServiceManagement (CNSM), 2012, pp. 164–168.
[3] T. Xing, H. Liang, D. Huang, and L. X. Cai, "Geographic-based service
request scheduling model for mobile cloud computing," in IEEE 11th In-
ternational Conference on Trust,Security and Privacy in Computing and
Communications (TrustCom 2012), 2012, pp. 1446–1453.
[4] G. Huerta-Canepa and D. Lee, "A virtual cloud computing pro-
vider for mobile devices," in 1st ACM Workshop on Mobile Cloud Com-
puting & Services: Social Networks and Beyond, California, USA, 2010,
pp. 1-5.
[5] E. Marinelli, "Hyrax: cloud computing on mobile devices using
MapReduce," Carnegie Mellon University, Master thesis 2009.
[6] A. Khalifa, M. Azab, and M. Eltoweissy, "Resilient Hybrid Mo-
bile Ad-hoc Cloud Over Collaborating Heterogeneous Nodes," in the 10th
IEEE International Conference on Collaborative Computing: Networking,
Applications and Worksharing (CollaborateCom 2014), Miami, Florida,
United States, October, 2014.
[7] A. Khalifa, M. Azab, and M. Eltoweissy, "Towards a Mobile Ad-
hoc Cloud Management Platform," in the 7th IEEE/ACM International
Conference on Utility and Cloud Computing (UCC 2014), London, United
Kingdom, December, 2014.
[8] A. Khalifa and M. Eltoweissy, "MobiCloud: A Reliable Colla-
borative MobileCloud Management System," in the 9th IEEE International
Conference on Collaborative Computing:Networking, Applications and
Worksharing, United States, 2013, pp. 158 – 167.
[9] A. Khalifa, R. Hassan, and M. Eltoweissy, "Towards Ubiquitous
Computing Clouds," in The Third International Conference on Future
Computational Technologies and Applications (FUTURE COMPUTING),
Rome, Italy, September, 2011, pp. 52-56.
[10] A. Khalifa and M. Eltoweissy, "A Global Resource Positioning
System for Ubiquitous Clouds," in the Eighth International Conference on
Innovations in Information Technology (Innovations'12), Abu-Dhabi,
United Arab Emirates, March, 2012, pp. 145-150.
[11] N. Fernando, S.W. Loke, and W. Rahayu, "Dynamic mobile
cloud computing: Ad hoc and opportunistic job sharing," in Fourth IEEE
International Conference on Utility and Cloud Computing (UCC), Aus-
tralia, 5-8 Dec. 2011, pp. 281-286.
[12] M. Black and W. Edgar, "Exploring mobile devices as Grid re-
sources: Using an x86 virtual machine to run BOINC on an iPhone," in
10th IEEE/ACM International Conference on GridComputing, 2009, pp. 9-
16.
[13] W. Lee, S. K. Lee, S. Yoo, and H. Kim, "A collaborative frame-
work of enabling device participation in mobile cloud computing," Mobile
and Ubiquitous Systems: Computing, Networking, and Services, Springer
Berlin Heidelberg, vol. 120, pp. 37-49, 2013.
[14] P. Mell and T. Grance, "The NIST Definition of Cloud Compu-
ting (ver. 16th and final definition)," National Institute of Standards and
Technology, Information Technology Laboratory, Sept. 2011.
[15] L. F. Bittencourt and E. R. M. Madeira, "HCOC: a cost optimiza-
tion algorithm for workflow scheduling in hybrid clouds," Journal of In-
ternet Services and Applications, vol. 2, pp. 207-227, December 2011.
[16] C. Lin and S. Lu, "Scheduling scientific workflows elastically for
cloud computing," in IEEE 4th International Conference on Cloud Compu-
ting, USA, 2011, pp. 746 - 747.
[17] K. Bessai, S. Youcef, A. Oulamara, C. Godart, and S. Nurcan,
"Bi-criteria workflow tasks allocation and scheduling in cloud computing
environments," in 5th International Conference on Cloud Computing,
USA, 2012, pp. 638-645.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 8, Issue 2, February-2017 568
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

[18] B. Yang, X. Xu, F. Tan, and D. H. Park, "An utility-based job
scheduling algorithm for cloud computing considering reliability factor,"
in International Conference on Cloud and Service Computing (CSC),
Hong Kong, 2011, pp. 95-102.
[19] L. Wang, G. von Laszewski, J. Dayal, and F. Wang, "Towards
energy aware scheduling for precedence constrained parallel tasks in a
cluster with DVFS," in 10th IEEE/ACM International Symposium on Clus-
ter, Cloud and Grid Computing (CCGRID’10), Australia, 2010, pp. 368–
377.
[20] M. Bourguiba, K.A. Agha, and K. Haddadou, "Improving net-
working performance in virtual mobile clouds," in Third International
Conference on the Network of the Future (NOF), 21-23 Nov. 2012, pp. 1-6.
[21] A. Khalifa and M. Eltoweissy, "Collaborative Autonomic Re-
source Management System for Mobile Cloud Computing," in the Fourth
International Conference on Cloud Computing, GRIDs, and Virtualiza-
tion, Spain, 2013.
[22] Anh-Dung Nguyen, P. Senac, and V. Ramiro, "How Mobility
Increases Mobile Cloud Computing Processing Capacity," in First Interna-
tional Symposium on Network Cloud Computing and Applications
(NCCA), 21-23 Nov. 2011, pp. 50-55.
[23] M. Eltoweissy, S. Olariu, and M. Younis, "Towards autonomous
vehicular clouds," in Ad Hoc Networks, ser. Lecture Notes of the Institute
for Computer Sciences, Social Informatics and Telecommunications Engi-
neering.Springer Berlin Heidelberg, vol. 49, pp. 1-16, 2010.
[24] M. Abuelela and S. Olariu, "Taking VANET to the Clouds," in
the 8th International Conference on Advances in Mobile Computing and
Multimedia (MoMM), New York, USA, 2010, pp. 6-13.
[25] T. Hristov, and G. Yan S. Olariu, "The Next Paradigm Shift:
FromVehicular Networks to Vehicular Clouds," in Mobile Ad Hoc Net-
working:The Cutting Edge Directions.: Wiley-IEEE Press, 2013, pp. 645 -
700.
[26] S. Arif et al., "Datacenter at the Airport: Reasoning about Time-
Dependent Parking Lot Occupancy," IEEE Transactions on Parallel and
Distributed Systems, vol. 23, no. 11, pp. 2067-2080, November 2012.
[27] M. Azab and M. Eltoweissy, "CyberX: A Biologically-inspired
Platform for Cyber Trust Management," in 8th International Conference
on Collaborative Computing, Oct. 2012, pp. 655- 663.
[28] M. M. M. Azab, "Cooperative Autonomous Resilient Defense
Platform for Cyber-Physical Systems," Virginia Polytechnic Institute and
State University, Doctor of Philosophy 2013.
[29] Cloud Security Alliance, "Security Guidance for Critical Areas
of Focus in Cloud Computing V2.1," 2009.
[30] Rakesh Agrawal, Tomasz Lmielinski, and Arun Swami, "Mining
association rules between sets of items in large databases," in ACM SIG-
MOD Conference, Washington DC , USA, 1993, pp. 207-216.
[31] et al. K. Debray, "Weighted Decision Trees," in JICSLP, 1992, pp.
654-668.
[32] L. Rabiner and B. Juang, "An introduction to hidden Markov
models," IEEE ASSP Magazine , vol. 3, pp. 4-16, 1986.
[33] Margaret K. Schafer, "Staffing the General Hospital: 25 to 100
Beds," U.S. Federal Security Agency, Public Health Service, Division of
Hospital Facilities, Hospital Services Branch, 1955.
[34] S. K. Garg and R. Buyya, "NetworkCloudSim: modelling paral-
lel applications in cloud simulations," in 4th IEEE International Confe-
rence on Utility and Cloud Computing (UCC 2011), Melbourne, Australia,
Dec. 2011, pp. 105–113.
[35] R. N. Calheiros, R. Ranjan, A. Beloglazov, C.A.F.D. Rose, and R.
Buyya, "CloudSim: a toolkit for modeling and simulation of cloud compu-

ting environments and evaluation of resource provisioning algorithms,"
Software: Practice and Experience, vol. 41, no. 1, pp. 23-50, January 2011.

IJSER

http://www.ijser.org/

	1 Introduction
	2 Related Work
	3 CoCloud Overview
	4 Cloud Resource Management
	4.1 Resource Management at Compute Node
	4.2 Resource Management at Control Node
	Collaborative Autonomic Resource Management System (CARMS): We design our CARMS architecture using the key features, concepts and principles of autonomic computing systems to automatically manage resource allocation and task scheduling to affect cloud...
	Figure 11. The expected number of mobile nodes versus time.

	6.3 Simulation Platform
	Assumptions

	Simulation Evaluation
	Metrics and Parameters
	Simulation Setup
	Results
	Connectivity effect at different number of tasks
	Density effect at different communication ranges of stationary nodes
	Density effect at different arrival rates of inactive nodes
	Reliability Effect
	Scalability and Management Overhead effect

	Findings

	7 Conclusion
	Develop a security mechanism to preserve the privacy and security constraints of a cloud resource provider, while allowing multiple users to share its resources and data for calendaring. There is a need to support distributed data access and computati...
	Extend our proposed architecture to enhance the prediction accuracy of resource availability by utilizing complementary data sources such as from social networking.

	References

